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ABSTRACT 

Numeric Function Generators (NFGs) have allowed computation of difficult 

mathematical functions in less time and with less hardware than commonly employed 

methods.  They compute piecewise linear (or quadratic) approximations that represent the 

value of the original function for a given input value.  The domain of the NFG is divided 

into enough segments such that the approximation is within the required error to the 

actual value of the function.  The linear (or quadratic) approximation varies for each 

segment.  The overall hardware complexity and propagation delay depend on the number 

of segments required, the arithmetic devices used to approximate the function, and the 

number of bits used to represent the numbers being calculated.   

This thesis develops an accurate method to quantify hardware utilization and 

propagation delay for various NFG configurations implemented on Field-Programmable 

Gate Arrays (FPGAs).  The algorithms and estimation techniques apply to different NFG 

architectures and to different mathematical functions.  This thesis compares hardware 

utilization and propagation delay for various NFG architectures, mathematical functions, 

word widths, and segmentation methods.  It shows when a quadratic NFG requires less 

hardware and when it has a longer delay than its linear NFG counterpart for various 

functions.  It also establishes a criterion for when non-uniform segmentation is beneficial 

for any function, based on the size of the NFG.  The findings in this thesis show that 

NFGs with non-uniform segmentation generally require more hardware and almost 

always have longer delays than NFGs with uniform segmentation.  They also show that 

quadratic NFGs required less hardware and have shorter delays as the size of the NFG 

gets larger.   
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EXECUTIVE SUMMARY 

This thesis describes a complexity/delay analysis of numeric function generators 

(NFGs) used in high-speed circuits for realizing arithmetic functions like ( ) sin( )f x x= , 

( ) lnf x x= , ( ) lnf x x= − , etc.  Specifically, it shows how complexities and delays for 

NFGs can be estimated without having to build the circuit.  It begins by constructing 

basic arithmetic components that are often used in NFGs.  Each component is analyzed in 

depth to estimate its complexity and delay based on the number of input bits, n.  Models 

of common NFGs are built realizing an approximation equation, ( )y x .  The models are 

used to compare various NFG architectures for particular functions.  NFGs with linear 

approximation equations are compared to NFGs with quadratic approximations. 

Uniform and non-uniform segmentation methods are also compared in this thesis 

because the complexity and delay of an NFG greatly depends on the complexity and 

delay of its coefficients table and associated segment index encoder (SIE).  Uniform 

segmentation divides the function interval into min
unifs segments of even width, while non-

uniform segmentation divides the interval into min
non unifs −  segments of varying widths.  The 

maximum segment width is determined by a maximum allowable errorε , 

where ( ) ( )f x y xε = − .  Non-uniform NFGs always require fewer segments than uniform 

NFGs, but they also require an SIE in order to determine within which segment x lies.   

For 13 of the 15 functions analyzed in this thesis, non-uniform segmentation 

offers no benefits.  However, when non-uniform segmentation drastically reduces the 

number of segments in an NFG, it can reduce the overall hardware complexity.  This 

occurs in the remaining 2 functions.  The amount of reduction from uniform to non-

uniform segmentation can be expressed as a ratio, namely the segment reduction ratio 

(SRR).  The minimum SRR required in order for non-uniform segmentation to be 

beneficial is critSRR .  critSRR  depends on the number of segments, s, which depends on ε  

and the properties and domain of the function being realized.  This thesis also shows that 

the SRR of a given function depends only on the properties of that function and its 



 xviii

domain.  Thus, for a given function ( )f x , when ( ) ( , )f x critSRR SRR n s< , then an NFG with 

non-uniform segmentation requires less hardware than the same NFG with uniform 

segmentation.  When the number of segments (corresponding to the number of memory 

locations) is restricted to a power of two, the number of segments for non-uniform 

segmentation is 2 minlog2
non unifsnon unifs

−⎡ ⎤− ⎢ ⎥= and number of segments for uniform segmentation is 

2 minlog2
unifsunifs

⎡ ⎤
⎢ ⎥=  and ,mincritSRR becomes a function only of n.  

Therefore, for a basic linear NFG, if 
( )

(2) *

(2) *

( ) 4
4( )

b

a
f x dx

nb a f x
<

+−

∫  (or 

Basic Linear Basic Linear
,mincritSRR SSR< ), then non-uniform segmentation yields a smaller amount of  

hardware.  This is true for basic quadratic NFGs when
( )

(3) *

(3) *

( ) 6
6( )

b

a
f x dx

nb a f x
<

+−

∫ .  From 

these equations, a critical value of n can be determined, critn , below which it is always 

more hardware efficient to use non-uniform segmentation.  The derivations of these 

equations assume that LUT cascades are used in the SIE and Chebyshev polynomials are 

used to determine the coefficients for the approximation equations.  They also assume 

that basic NFG architectures are used.  The term “basic” refers to an architecture that 

does not truncate bits during its arithmetic operations.  

This thesis shows that non-uniform segmentation always has a longer delay than 

uniform segmentation, except in rare trivial NFGs (where 8n ≤ ).  In fact, when NFG 

architectures for 15 functions were compared in terms of delay, non-uniform NFGs 

proved the best only in a few cases when 2n ≤ .  If 2n ≤ , then an NFG is not required 

since two LUTs can be used instead.  Appendices D.2.2 and D.3.2 show the best 

architectures based on delay for 15 functions. 

Linear and quadratic NFGs are also compared in this thesis.  Estimation results 

show that linear NFGs consume less hardware than quadratic NFGs for n less than ≈25 

to 29 bits (for the 15 functions compared).  They also have smaller delays than quadratic 



 xix

NFGs for n ≈37 to 39 bits.  This thesis shows which of the four basic architectures 

(linear uniform (LUB), linear non-uniform (LNB), quadratic uniform (QUB), quadratic 

non-uniform(QNB)) is best in terms of hardware utilization and delay for all 15 functions 

analyzed.  It also shows the best of four compact NFG architectures (LUC, LNC, QUC, 

and QNC).  The compact architectures are similar to the basic architectures except they 

require smaller arithmetic units.  
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 1

I. INTRODUCTION 

A. PROBLEM DEFINITION 

Computer calculations of numerical functions are required in many applications 

ranging from computer graphics to robotics to radar return processing [11].  

Trigonometric, logarithmic, exponential, and power functions are all widely used, as well 

as combinations of them.  Well designed application specific integrated circuits (ASICs) 

generally offer the fastest computation time for a specific function because they are 

designed with that function in mind.  Therefore, they are usually expensive because they 

are not in high demand.  However, they typically serve only one purpose.  

Reconfigurable computers are an important developing technology that can be used to 

perform specific computations.  They provide a universal platform for a wide variety of 

tasks and allow the task to be changed.  Reconfigurable computers often use Field-

Programmable Gate Arrays (FPGAs) to implement the desired logic designs. The benefit 

of using FPGAs for complex computations is that the FPGA can perform the 

computations while the processor performs other system-related tasks.  Having the FPGA 

compute the desired function is generally faster than having the main microprocessor do 

the same computation.  The main processor can also perform other systems tasks instead, 

therefore making the entire computer system faster.   

This thesis analyzes methods for approximating numerical functions.  It also 

discusses the implementations on FPGAs, so problem solutions must be able to fit on a 

particular FPGA while still meeting the speed and precision requirements of the 

application requiring the function computation.  This section discusses some of the 

hardware configurations that are currently employed in performing these calculations, 

including using numeric function generators (NFGs). 

1. Methods for Numeric Function Computation   

There are several methods for computing real functions with electronic hardware.  

The following methods are commonly employed.   



 2

a. Lookup Table 

A simple method for computing a numerical function is by using a lookup-

table (LUT).  LUTs use input variable x as the address to a memory block.  The data 

word stored at that address is the function’s value ( )f x . This method requires an 

enormous amount of memory for any relatively large computing system.  Consider a 

simple architecture where x has 16 bits and the result has 16-bits.  The LUT requires 
16 202 16 2 1,048,576× = = memory bits, or 131,072 bytes.  This is relatively large amount 

for such a small number system, making it very difficult to implement on FPGAs.  

Modern computer systems require n to be much larger, generally 32 or 64-bits.  A 32-bit 

LUT requires over 17 Gbytes, and a 64-bit LUT requires 201.5 10× bytes.  Because of the 

size requirements, LUTs are generally not the best solution for reconfigurable computers 

because they do not fit on commonly used FPGAs. 

b. CORDIC 

COordinate Rotational DIgital Computer (CORDIC) algorithms are often 

used because they require a small amount of hardware [1] [11].  They are used in many 

pocket calculators and floating-point coprocessors [6].   

CORDIC devices perform successive arithmetic operations iteratively.  

Each of the iterations increases the precision of the result.  Modern technology requires a 

high accuracy in very little time.  Since the precision of CORDIC algorithms are 

proportional to the computation time, they are becoming less acceptable [16] for high-

speed applications.  In addition, CORDIC algorithms have been developed only for a 

limited set of functions.   

c. Power Series 

Some numerical functions can be decomposed into an infinite series 

known as a power series.  The power series is an infinite sum of powers of an input 

variable x, or ( ) 2
0 1 2

0
( ) ( ) ( ) ...i

i
i

f x a x c a a x c a x c
∞

=

= − = + − + − +∑ .  When c=0, this 
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architecture can be implemented compactly in an iterative form, requiring a multiplier, an 

adder, a register, and memory storage for the coefficients ia .  Like the CORDIC 

algorithm, the accuracy of the result depends on the number of iterations of the algorithm 

and it can be applied only to a limited number of functions.  For example, ( ) xf x e=  can 

be calculated by represented by the power series 
2 3

0
1 ...

! 2! 3!

n
x

i

x x xe x
n

∞

=

= = + + + +∑  but 

more complex functions might not be able to be computed. 

d. Shift and Add Algorithms 

Shift and add algorithms, such as the BKM algorithm [6] (named for its 

developers J.C. Bajard, S. Kla, and J.M. Muller), have been developed to compute 

functions without using multipliers.  They simply iterate shifts and add, thus reducing the 

hardware significantly.  BKM algorithms compute a limited number of functions, 

including: 2-D vector rotations, logarithmic functions, exponential functions, sine and 

cosine functions and arctan functions [6].  However, their precision still depends on the 

number of iterations in the computation; therefore they often do not meet the 

requirements of high-speed applications. 

e. NFGs 

NFGs return a function value by using piece-wise approximations.  NFGs 

require a few basic arithmetic devices and a coefficient memory or LUT.  The memory 

size generally depends on the function being implemented and the precision of the 

system, but it is always smaller than that of using a LUT alone.  NFGs perform the same 

numerical calculations for every function (for example, 1 0( )f x c x c= +  for linear 

approximation), but just use different coefficients.  NFGs can be considered a 

combination of the methods described above.  They use less memory than a LUT alone 

and they often employ arithmetic devices (multipliers and adders) similar to power series 

architectures.  However, the computation by an NFG is not iterative.  Thus, NFGs can 

compute any function with a small amount of hardware and a small computation time. 
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2. Goal of This Thesis 

This thesis analyzes NFG architectures in depth to make accurate estimations of 

complexity and delay.  In this way, we can understand easily, for example, how tradeoffs 

can be made between complexity, delay and accuracy.  The only other way is to build 

actual designs, which is computationally intensive.  It analyzes and compares arithmetic 

component complexity and delay as well as NFG architectures that are composed of 

those components.  It develops models of common architectures, and provides a 

framework with which any architecture can be built.  Models for simple NFG 

architectures are compared to determine which are the most efficient with respect to 

hardware utilization and delay.  Comparisons include hardware utilization and delay for 

linear versus quadratic NFGs, as well for NFGs with uniform versus non-uniform 

segmentation.    

B. THESIS ORGANIZATION 

Chapter I introduces the problem being discussed in this thesis, including some of 

the current methods to solve the problem.  It also discusses why this thesis focuses on 

NFGs instead of analyzing the other methods.  Chapter II focuses on the basic 

understanding of how linear and quadratic NFGs work, including their basic 

architectures.  Chapter III develops accurate tools to measure hardware utilization and 

propagation delay for the basic arithmetic components commonly used in NFGs.  It 

explains how simulation data was obtained and used to estimate various NFG 

configurations.  Chapter IV builds models for NFG architectures commonly used in 

recent resources.  Each model can realize any function.  Chapter IV also establishes a 

framework by which any particular NFG architecture can be built. Chapter V compares 

the models in Chapter IV for example functions. It shows when it is better to use 

quadratic versus linear NFGs for several functions based on hardware utilization and 

delay.  It also develops a criterion for determining whether or not it is better to use non-

uniform segmentation.  Chapter VI summarizes the findings of Chapter V and discusses 

future applications of the modeling methods in this thesis. 

 



 5

II. BACKGROUND ON NFGS 

This chapter discusses how linear and quadratic NFGs operate.  It is mostly 

concerned with NFGs implemented on reconfigurable computers and FPGAs.  The 

architecture of an NFG is somewhat independent of the function being realized.  Thus, a 

generic NFG can be used to realize a wide range of functions without having to redesign 

logic circuits.  Also, NFGs on FPGAs are reconfigurable, so it is easy to reprogram it to 

compute a different function. 

A. GENERAL NFG OPERATION 

An NFG is an arithmetic logic device that estimates the value of a real 

function ( )f x  for a given input x using a piecewise approximation ( )y x .  The domain of 

the NFG [ , ]a b  is divided into s segments each with domain [ min, max,,i ix x ), where i is the 

segment index number.  Thus, ( ) ( )iy x y x=  iff min, max,i ix x x≤ < .  Each approximation 

function ( )iy x  may be a linear, quadratic or some other simple function of x.  For all 

inputs x, the NFG must determine what segment it is in in order to determine the 

approximation function.   

B. LINEAR NFGS 

Simple linear NFGs use the approximation function 1 0( )i i iy x c x c= +  for each 

segment, where i∈  and1 i s≤ ≤ .  The values for 1ic and 0ic  are stored in a coefficients 

table and recalled once the segment number i is known for a particular x.   Figure 1 

shows an example of how linear approximation functions are used for each segment.  In 

the example, ( ) 2xf x = with a domain [0,5] and s=5, and the particular segment index 

i=4. 
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Figure 1 Linear Approximation for a Single Segment for ( ) 2xf x = . 

 

1. Basic Linear NFG Architecture 

The architecture of a basic linear NFG is shown in Figure 2.  It consists of 

arithmetic components (multiplier and adder), a memory to store coefficients, and logic 

circuit to determine the segment index (if necessary). 
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Figure 2 Basic Linear NFG Architecture.  (After [12]) 

 

2.  Approximation Techniques 

The linear equations ( )iy x  are computed prior to constructing the NFG for each 

segment.  They are stored in the coefficients table.  The coefficients can be determined by 

several methods, a few of which are described below. 
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a. Secant Line Approximation (SLA) 

For a given segment i, the endpoints of the segment ( min,ix and max,ix ) are 

used to determine the slope and intercept values ( 1ic and 0ic , respectively).  The slope is 

max, min,
1

max, min,

( ) ( )i i
i

i i

f x f x
c

x x
−

=
−

and the intercept value is 0 min, 1 min,( )i i i ic f x c x= − .  The error of 

this approximation is
max

( ) ( )SLA if x y xε = − .   

b. Modified Secant Line Approximation (MSLA) 

The SLA method is a quick method to estimate a function over a given 

segment, but it is obviously not the most accurate.  The maximum error in a particular 

segment can be reduced by adjusting 0ic by a value less than SLAε .  Consider a function 

( )f x that is monotone increasing or decreasing over min, max,[ , ]i ix x .  The linear 

approximation 1 0( ) ( )i i iy x c x c f x= + ≠ on ( )min, max,,i ix x . Therefore, ( )iy x is always greater 

than or less than ( )f x on ( )min, max,,i ix x .  If ( ) ( )iy x f x>  on ( )min, max,,i ix x , then subtracting 

2slaε  from 0ic (from the SLA), yields a maximum error of 2MSLA SLAε ε=  for the 

segment.  Figure 3 shows the difference between the linear approximation equations 

using SLA and MSLA. 

c. Least Squares Approximations 

MATLAB uses a function called polyfit to calculate coefficients for linear, 

quadratic and higher order approximation functions based on the least-squares error.  The 

least squares method is commonly used to minimize the sum of the differences between 

two given functions.  This particular method is not desired for applications with NFGs.  

NFGs are concerned with being able to compute a value of a function and yield an 

answer that is correct to the limits of the number system on which it is implemented.   
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NFGs are designed to produce a result with an error that is less than a maximum specified 

error, and not to minimize the sum or average errors.  The example in Figure 3 shows that 

the polyfit function (using a linear fit) produces a larger maximum error than the MSLA.   
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Figure 3 Linear Approximations of ( ) 2xf x = . 

 

C. QUADRATIC NFGS 

Quadratic NFGs use the approximation function 2
2 1 0( )i i i iy x c x c x c= + +  for each 

segment, where i∈  and 1 i s≤ ≤ .  The values for 2ic , 1ic and 0ic  are stored in a 

coefficients table and recalled once the segment number is known for a particular x.   

Figure 4 shows an example of how quadratic approximation functions are used for each 

segment.  The example is the same as discussed for a linear approximation above. 
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Figure 4 Quadratic Approximation for a Single Segment for ( ) 2xf x = . 

 

1. Basic Quadratic NFG Architecture 

The architecture of a basic quadratic NFG is shown in Figure 5.  Like the linear 

architecture, it also consists of arithmetic components (multipliers and adders), a memory 

to store coefficients, and logic circuit to determine the segment index.  However, 

quadratic NFGs require three multipliers and a 3-input adder.  Although quadratic NFGs 

require more arithmetic devices than linear NFGs, they require fewer segments, and thus 

smaller memory sizes.   
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Figure 5 Basic Quadratic NFG Architectures.  (After [8]). 
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2. Approximation Techniques 

Determining the best coefficients for quadratic approximations is quite difficult 

and cannot be generalized for all functions.  However, some methods have been 

considered sufficient to find coefficients that can accurately approximate given functions.  

Several approximation techniques are outlined in [6], but the ones of concern are those 

that minimize the maximum error in each segment.  These are known as the least 

maximum polynomial approximations [6].   

a. 2nd Order Chebyshev Polynomial Approximation 

Chebyshev polynomials provide a straightforward method for determining 

the coefficients required to approximate a function with any order polynomial. 

“Chebyshev polynomials play a central role in approximation theory [6].”  They have 

been studied in depth and have many properties that allow simple error calculations.  

Their properties are used to prove asymptotic relations for finding the widest segment 

required and for finding the minimum number of segments required.   

b. Minimax Approximation 

Second order minimax approximations use the fact that there are at least 

four values of x where the maximum approximation error is reached with alternating 

signs, namely x0, x1, x2, and  x3 [6]. The minimax approximation solves the following set 

of equations to determine the coefficients of the polynomial approximation 
2

2 1 0( )i i i iy x c x c x c= + + . 
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c. Remez Algorithm 

The Remez algorithm for finding polynomial coefficients is an iterative 

method that starts with coefficient value estimates from typically either Chebyshev or 

minimax approximations.  The points where the error is maximum are found and then 

used to calculate new coefficients, reducing the new error.  Since Chebyshev polynomials 

have approximations that are very close to optimum, the Remez algorithm quickly 

converges.  This method often provides coefficients that more accurately compute the 

NFG approximations.  This results in larger segment sizes.  Therefore, it also results in 

fewer required segments.  

D. FACTORS CONTRIBUTING TO COMPLEXITY AND DELAY 

The complexity and delay of an NFG depends on the complexity and delay of its 

arithmetic components, as well as the size of the coefficient table required.  

1. Factors Affecting Arithmetic Component Complexity and Delay 

a. The Size of the NFG 

The size of the NFG n, refers to the number of bits input into the NFG.  

The examples analyzed in this thesis also assume that the NFG produces the same 

number of bits for its result.  As n grows, the complexity and delay grow because more 

logic gates are required for each of the components in the NFG.  For example, a 32-bit 

adder requires more logic gates and has a longer delay than a 16-bit adder. 

b. NFG Architecture 

NFGs can be configured in several ways.  The architecture determines 

what components and how many components are needed to realize a function ( )f x .  For 

example, a basic linear NFG with uniform segmentation requires a multiplier, adder, and 

coefficients table.  An equivalent basic quadratic NFG with uniform segmentation 

requires three multipliers and two adders.  Other configurations can require other 

arrangements and numbers of component which all contribute to the total complexity and 
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delay.  Some NFGs can be arranged to compute several operations in parallel to minimize 

overall delay.  Thus, the architecture plays a large role in the complexity and delay of the 

NFG components.   

2. Factors Affecting the Number of Segments 

The number of segments depends on the size of the NFG, n, ( )f x  and its domain 

[a,b], and the segmentation method.  The number of segments determines how much 

memory is required to store the coefficients for the estimation equation ( )y x .  They are 

analyzed further in later chapters. 

a. Function and NFG Domain 

Asymptotic equations in [5] show that the minimum segment width 

required is a function of the 2nd or 3rd derivative of ( )f x  for linear and quadratic NFGs 

respectively.  Thus, for a given NFG domain, the number of segments required also 

depends on the particular function ( )f x  realized by the NFG.  As the domain of the NFG 

gets larger, more segments are required for the same allowable errorε .   

b. The Size of the NFG 

The number system, or the number of bits in the input and output of an 

NFG, plays a role in determining the maximum allowable error.  The goal of an NFG is 

to compute an approximation with an error that won’t be noticed by the system that is 

using the NFG.  As n grows the allowable errorε  gets smaller, requiring more segments.  

Also, the size of the NFG generally affects the required precision for the NFG, which 

affects the number of required segments.  Therefore, the size of the coefficient table also 

depends on n. 

c. Segmentation Method 

Choosing between uniform and non-uniform segmentation can drastically 

affect the overall number of segments required.  Methods in [5] derive a minimum 
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segment width minσ , for a given function on a given interval [a,b].  Dividing the interval 

into uniform-width segments, each miniσ σ=  for all i, where min1 i s≤ ≤ .  Here mins is the 

minimum number of segments required and min
min

b as
σ
−

= .  Non-uniform segmentation 

over the same interval first finds minσ  and uses it for a particular segment, iσ .  For 

optimum segmentation, a new minσ  is found for the remaining portion of the interval 

(excluding segment i).  This occurs repeatedly until the segments include the entire 

domain of the NFG.  Non-uniform segmentation always produces fewer segments.  

Figure 6 shows an example to compare the number of segments required for uniform and 

non-uniform segmentation of ( ) cosf x xπ= on [0,0.5] for an 92ε −= .  Uniform 

segmentation requires 11 segments, and non-uniform segmentation requires 10.   
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Figure 6 Uniform vs. Non-Uniform Segmentation.  (From [20]) 

 

E. CHAPTER SUMMARY 

This chapter shows how NFGs approximate real functions, including several 

methods for computing the coefficients of the approximation equations.  It also shows 

factors that affect the complexity and delay of NFGs and the components required to 

construct four basic NFG architectures. The next chapter shows how each of these 

components (and others) can be built on the Xilinx Virtex-II.  It estimates the complexity 

and delay based on the size of each component using simulation data and approximated 

data.  
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III. ANALYZING HARDWARE COMPLEXITIES AND 
PROPAGATION DELAYS 

This chapter proposes a method to estimate circuit complexity and speed for 

common NFG components.  This will allow us to compare the hardware complexity and 

speed of various NFG configurations.  A standard method for measuring these quantities 

is proposed.  The proposed method is applicable to a wide range of configurations, 

providing meaningful comparisons among various NFG configurations. 

The supporting data was observed using particular hardware (Xilinx Virtex-II) 

and software (Xilinx ISE Project Navigator), but the methods can be applied universally 

to other FPGAs with minor alterations.  Since the method of measuring is standardized, it 

provides a meaningful approach in understanding the relative complexity of realizing 

different arithmetic functions. 

When actually designing an arithmetic logic device, pipelining can dramatically 

reduce propagation delays for the circuit.  In best case scenarios, pipelining can cause the 

circuit to output an answer every clock period.  A disadvantage of pipelining comes from 

an initial delay due to the pipeline depth.  Large circuits tend to have a large pipeline 

depth, which means there is a long delay from the time data is input into the circuit, until 

the result comes out.  Because pipelining can be implemented at a various points in a 

logic circuit, it is difficult to reach a standard way to measure time delay.  For this reason, 

this thesis implements combinational logic circuits instead of pipelined circuits.  In 

general, a combinational logic circuit that has a longer propagation delay will tend to 

have a longer pipeline depth as well.  Thus, it is a relevant method of delay measurement. 

A. HARDWARE RESOURCES 

NFG component circuit designs are simulated and synthesized for the Xilinx 

Virtex-II XC2V6000 FPGA with a speed grade of -4.  This is the FPGA that is presently 

available on the SRC-6, a reconfigurable computer at NPS.  This section explains the 

general architecture of the Xilinx Virtex-II FPGA, including the available logic  
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resources.  The Virtex-II includes Combinational Logic Blocks (CLBs), 18-by-18-bit 

signed multipliers (MULT18x18s), and Block Select RAM (BRAM).  Figure 7 shows 

how these resources are arranged on the Virtex-II FPGA.   

 

 
Figure 7 General Placement of Resources on Xilinx Virtex-II FPGA.  (From [18]) 

 

Also shown are the Digital Clock Manager (DCM) units and Input/Output Blocks 

(IOBs), which are not used in the complexity measure.  DCMs can be used to de-skew 

clock signals, manage multiple clock phases, create multiple frequency clock signals, and 

more [19].  The analyses in this thesis consider combinational logic delays and do not 

take into account complicated clocking schemes.  Therefore, DCM usage is not 

considered in this thesis.  IOBs route signals from the input pins to the logic circuitry in 

the FPGA and route signals from the logic circuitry to the output pins.  The NFGs 

considered in this thesis are built from the available logic within the Virtex-II 

XC2V6000.  Thus, for a given NFG size n, the number of IOBs consumed is 2n.  In this 

thesis, all of the available logic resources are always consumed before the IOBs.  

Therefore, the number of IOBs consumed is not relevant when comparing NFGs of the 

same size.   

Each CLB on the Virtex-II FPGA is subdivided into four slices.  Each slice is 

identical, except for its position in the CLB.  Thus, the number of available slices is also a 

good measure of logic resources.  Table 1 shows the five resources and the quantity 



 17

available on the Xilinx Virtex-II XC2V6000 FPGA.  The amount of resources available, 

timing information for specific logic devices, and other specifications are included in the 

author’s MATLAB file LoadISEDeviceData.  It also imports some data from 

simulations.  NFGs implemented on other FPGAs can be analyzed by altering 

LoadISEDeviceData to contain specifications for that particular FPGA.  

 

Resource Quantity 

Slices 33792

MULT18x18 144

BRAM 144

IOB 1104

DCM 12

Table 1 Xilinx Virtex-II XC2V6000 Resources. (From [18]) 
 

1. CLBs 

The most basic element of the CLB is the function generator.  The function 

generator can be configured to realize a 4-input 1-output logic function or LUT, a 

ROM/RAM with 16 1-bit-words (16x1), or a 16 bit shift register.  Even though 16x1 

RAM units are realizable with a LUT, the circuits analyzed in this thesis do not require 

RAM, therefore there will be no further discussion of components that are related to 

RAM.  For the purpose of this thesis, the function generator can be considered a look up 

table independent of what purpose it serves.  For example, a 16x1 ROM is a 4 input to 

single output function.  Xilinx has configured quick paths for linking these devices to 

larger configurations based on what purpose they serve.  These timing characteristics are 

taken into account when building and analyzing the specific components on the FPGA.  

When considering how much hardware is used, the specific function of the function 

generator is irrelevant.  The circuit designs in this thesis most often use the function  

 



 18

generator as a LUT.  Therefore, in order to simplify terminology, each function generator 

is referred to as a LUT.  Figure 8 illustrates a portion of the basic slice of a Virtex-II 

FPGA, highlighting some of the logic devices that are used in this thesis.   
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Figure 8 One-Half of a Xilinx Virtex-II Slice.  (After [18])  

 

A slice combines two LUTs with additional hardware including several MUXs, 

two clocked registers, and additional gates that are commonly used in arithmetic 

operations (XORCY, ORCY, etc.).  Thus, Xilinx has made the basic slice extremely 

versatile and efficient for common operations.  There are four slices per CLB.  These are 

connected together efficiently with minimal signal propagation delay.  Four slices 

comprise a CLB.  See Figure 9 for an illustration of the CLB layout.   
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Figure 9 Xilinx XCV6000 CLB Layout. (From[18]) 
 

2. MULT18x18s 

The MULT18x18 is a signed two’s complement multiplier. Thus, it can multiply 

two 17-bit magnitude numbers, and return a 35-bit magnitude result along with an extra 

bit for the sign.  The MULT18x18s are arranged in columns as shown in Figure 7.  This 

reduces the propagation delay between the MULT18x18 and its surrounding components, 

allowing for fast connections between MULT18x18 to BRAMs, CLBs or IOBs.  The 

MULT18x18s cannot be configured to perform other functions, but they may be used as 

multipliers with less than 18-bit multiplicands.  There are a few benefits for using it for 

smaller multipliers.  First, the circuit designer does not need to design a multiplier from 

CLBs (which would be slow).  Second, because the multiplier does not consume CLBs, 

the CLBs can be used for other functions.  This consumes all of the resources more 

evenly.  Finally, when considering circuit performance, using multiplicands with fewer 

bits results in fewer bits in the product.  This results in a smaller propagation delay 

through the MULT18x18.  Xilinx has designed the Virtex-II such that the delay from the 

input to the output is linear with respect to the output pin.  For example, if the MSB of 

the product comes off of pin α  and it takes tα  to propagate through the MULT18x18, 

then a multiplier with its MSB off of pin kα + takes kt t kα α δ+ = + , where ,kα ∈ , 

0 35kα≤ + ≤ , and δ is the slope of the line in Figure 10.  The Multiplier Switching 
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Section in [18] shows the delay at each pin, from the LSB of the multiplicand to the MSB 

of the product.  The synthesis reports show this linear relation (Appendix B.1). 

 
Figure 10 Pin-to-Delay ratio curve for MULT18x18.  (From [19]) 

 

3. BRAMs 

BRAMs are an integral resource on the Virtex-II.  They are arranged in columns 

between the MULT18x18s and the CLBs.  This reduces the delay between memory and 

the multipliers.  Each of the 6 columns contains 24 BRAMs.  Each BRAM contains up to 

18Kbits, and can be configured in various word widths, (1 to 36 bits).  Thus, each BRAM 

uses 9 to 14 address lines, depending on the width of the word stored.  There are a total of 

324Kbytes of data storage in BRAMs on the Virtex-II XC2V6000. 

 

B. SOFTWARE 

This section discusses the software that was used to obtain simulation data and to 

estimate complexity and delay for NFG components. 

1. Xilinx ISE Project Navigator 

Xilinx ISE Project Navigator was used extensively for designing, simulating and 

synthesizing various arithmetic logic devices.  The software suite includes schematic and 

VHDL editors along with a library of hardware primitive components.  In some cases, 

behavioral VHDL modules were created, and, in other cases, schematic modules were 

created.  Once a particular module was created, it was synthesized to provide estimations 
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of hardware utilization and worst case propagation delays.  Examples of the synthesis 

reports are contained in Appendix B.1.  

2. MATLAB 

MATLAB was also used extensively.  MATLAB was used to plot data obtained 

from the synthesis reports.  It was also used to import the same data and to estimate 

hardware utilization and delay for various arithmetic devices.  It was used for visual 

analysis of NFG hardware utilization and propagation delays.  A summary of the 

MATLAB source code is in Appendix A.   

C. DATA COLLECTION AND ESTIMATION 

In order to analyze a particular NFG’s hardware utilization and propagation delay, 

it is necessary to have data on the particular arithmetic components that are used by the 

NFG.  For example, if an NFG requires a 23x23-bit multiplier and a 46-bit adder, then it 

is necessary to know the hardware utilization and propagation delay for the 23x23-bit 

multiplier and the 46-bit adder.  The goal of collecting the data for this thesis is to obtain 

relatively accurate measurements in order to be able to estimate complexity and delay 

parameters without having to implement a specific logic design of each NFG.  In 

addition, it might be required that we compare this same NFG to a similar one with a 

22x22-bit multiplier and a 44-bit adder.  Since it is impractical to construct multipliers, 

adders (and other arithmetic devices) of every possible size, only a subset of sizes were 

considered.  The pertinent information was gathered from the synthesis reports into the 

text files in Appendix B.2.  Timing data from the synthesis reports was used because it 

was accurate to 1ps.  Timing information provided in [18] was only accurate to 10ps, but 

still confirmed the data obtained through simulation.  Since the data did not cover all 

possible sizes, estimates were made so that a data point exists for components of all sizes 

ranging from 1-bit components up to 129-bit components.  In some cases, such as the 

Ripple Carry Adder (RCA), equations were developed that match all of the simulation 

data points.  In other cases, such as the multiplier, missing data points were estimated 
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using linear approximations.  Device architectures and trend analysis of the data points 

were both considered when deciding what data points to collect. 

1. Making Linear Approximations for Missing Data Points 

The author’s MATLAB function fillLin takes scattered x and y data points, given 

in array form, and estimates the data points in between the given x values.  The array x 

must be an array of monotonic increasing integers.  The length of the array x must be the 

same as the array y. This is applicable to this thesis because this function will estimate a 

parameter of an n-bit sized device, where n∈ .  The array x holds the n values in the 

collected data tables, and the array y holds the propagation delay values or the hardware 

utilization values.  The fillLin function produces an array y’ where the index ranges from 

1 to the maximum value of the original x array, and the value is the estimated function 

value evaluated at the index number.  For example, to approximate a known 

function 2( )f x x= , where data points are taken at x = 1, 2, 4, 7, and 9, call the function in 

MATLAB with the array x = [1 2 4 7 9], and the corresponding array y = [1 4 16 49 81]. 

The function “fillLin” returns the array y’ = [1 4 10 16 27 38 49 65 81].  The array y’ is 

now 9 elements long, and has a value for every integer x, ranging from 1 to 9.  To obtain 

y(3), or 23 , simply call y’ with 3 as the index into y’, resulting in y’(3) = 10.  Of course, 

this example illustrates the inaccuracies of the approximation, but as more data points are 

collected, better approximations occur.  Also, this function is applied only to 

monotonically increasing functions, namely hardware utilization with respect to word 

size, and propagation delay with respect to word size.  As the word size of an arithmetic 

device gets larger, both complexity and delay get larger.  Even slightly inaccurate 

estimations still provide a value that can be used for general comparisons.  Figure 11 

shows how fillLin fills in the missing data from collected data points with linear 

approximations to form a continuous function where the input is an integer from 1 to at 

most 129.   
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Figure 11 Example of fillLin Approximation for 2y x= . 
 

The graph in Figure 12 shows the application of the function fillLin to the data 

collected for the net delays.  The stems represent the actual data points collected.  This 

means that propagation delays were collected for several fanouts.  If a designer needs to 

find the net delay for a particular node with a fanout of 100, it is easy to extract that 

information from the array created by fillLin.  Data collected for several components is 

shown in Appendix B.2.  The graphs of fillLin results for these data points are shown in 

Appendix B.3. 
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Figure 12 fillLin Function (Using Data Points from Net Delay). 
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The fillLin function yields an accurate representation without having to collect 

data points to fill the entire x-axis.  The accuracy of the fillLin function is not analyzed in 

depth in this thesis because the errors in estimation are relatively minute.  For example, a 

visual inspection of Figure 12 shows that when the largest jump between data points 

occurs between fanout values of 81 and 127.  The approximate distance in net delay 

between the two fanouts is 0.1 ns.  Assuming basic knowledge of net delay vs. fanout, we 

can say that net delay is monotone increasing between successive data points.  Therefore, 

the maximum error possible for fanout is 0.1 ns, which is relatively minute.  The actual 

error is most likely much smaller than 0.1 ns.  However, when fewer data points are 

collected, the relative errors can be large.  To minimize these errors, specific data points 

are collected based on analysis of component architectures.  

When collecting data to enter into the function, data points were collected at key 

positions so that a piecewise linear approximation of the complexity and delay equations 

would be accurate.  It was verified that midpoints corresponded to projected linear 

approximations.  The purpose of the steps above is to develop a function that returns the 

delay or complexity of a circuit element based on the number of input bits, and the type 

of element.  For example, if an NFG requires a 23x23 bit multiplier, the function returns 

an accurate time delay without building and synthesizing it; its complexity and delay are 

computed by interpolating between a value of n above and below n=23.   

In some cases, it was possible to determine an actual function from the data 

points.  For example, the delay of an RCA versus word-size is a linear function for n >4.  

For these instances, the linear equation is used to approximate time delays and/or 

complexity, and ‘if’ statements replace the delay value for data points that don’t fit the 

approximation equation.  In the case of the RCA, for n=1 to 4, a simpler architecture is 

possible, so specific data points are used to give the delay and size estimates.  In general, 

all devices exhibit nonlinear behavior of delay and size versus n when n is small because 

there are multiple ways route signals inside each slice of the FPGA.  Each of these signal 

paths have different delays based on the particular electronic device through which it is 

routed. 
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Data was collected at various word-widths n for net delays, which are based on an 

n-bit fanout, nxn-bit unsigned multipliers, n-bit RCAs, n:1 MUXs, n-address bit 

distributed RAM/n-input functions/n-address bit ROM and BRAMs.  Other devices can 

be constructed from these basic elements.   

2. Measuring Hardware Complexity 

It is difficult to measure hardware utilization when there are different types of 

resources, each having a different quantity.  This section describes the how each resource 

is consumed, and how a single measure can be used to describe overall hardware 

utilization based on the utilization of each resource. 

a. Deciding on the Basic Units of Measurement 

Since there are multiple ways to organize the basic signal flow through a 

CLB, it is complicated to find a common method to quantify how much space a circuit 

takes up.  In some instances, a device might use only 1 LUT, but also use multiple MUXs 

in the same slice.  Thus, even when only 1 LUT is used, it may still prevent the use of the 

rest of the slice by other circuitry.  The synthesis reports from Xilinx ISE Project 

Manager include the number of slices used, α , and the number of LUTs used, β .  

However, α  may be more than 2β , suggesting that not all of the slices use both of its 

LUTs.  For this reason, we measure hardware utilization in terms of slices utilized.  

Doing so puts everything in common terms that are verifiable with the software being 

used.   

Likewise, the synthesis reports include the number of MULT18x18s and 

BRAMs used in a particular design.  No partial resources are used.  Even if only 2 bits of 

a MULT18x18 are used, it consumes the entire resource.  If only 2-bytes of RAM are 

implemented in a BRAM, then it consumes the entire block of memory.  Thus, the basic 

unit for measurement of MULT18x18s is 1 MULT18x18, and the basic unit for BRAMs 

is 1 BRAM. 
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b. Finding Meaningful Terminology for Measuring Hardware 
Utilization 

Since three resources are considered, there are three terms for hardware 

utilization.  The slice utilization percentage (SUP) is defined as percentage of the slices 

that are required in order to implement a specific logic circuit design, based on the data 

from the synthesis reports (see Appendix B.1).  Likewise, the multiplier utilization 

percentage (MUP) and BRAM utilization percentage (BUP) are defined as the 

percentages of respective resources used to implement a specific circuit design.  Table 2 

summarizes the equations for calculating these measures, using the quantities of 

resources given in Table 1. 

 

# slices utilized # slices utilizedSUP= 100% 100%
total #slices on FPGA 33792

× = ×  

# MULT18x18s utilized # MULT18x18s utilizedMUP= 100% 100%
total #MULT18x18s on FPGA 144

× = ×

# BRAM utilized # BRAM utilizedBUP= 100% 100%
total #BRAM on FPGA 144

× = ×  

( )( )( )3100% 100% 100% 100%HUP SUP MUP BUP= − − − −  

Table 2 Equations for SUP, MUP, BUP, and HUP. 
 

It is often useful to compare devices that use more than one resource at a 

time.  For example, large multipliers consume onboard MULT18x18s, but also require 

partial product adders which consume CLBs.  Consider comparing an NFG that uses this 

multiplier with one that uses a large ROM instead.  The ROM might consume only 

BRAMs.  A SUP, MUP and BUP can be calculated and compared for each NFG, but 

there is no way to compare overall hardware utilization.  For this reason, the hardware 

utilization percentage (HUP) is computed as a function of the SUP, MUP and BUP.  The 

function shown in Table 2 is used because it exhibits desirable characteristics.  When any 

single resource is consumed (i.e. SUP, MUP, or BUP 100%≥ ), HUP = 100%, indicating 
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that the required resources are not available on the Xilinx Virtex-II XC2V6000 FPGA.  

This does not necessarily mean that the NFG cannot be implemented on this particular 

FPGA.  It means that the models developed in this thesis no longer provide accurate 

estimations for HUP and delay.  Each model assumes that particular components are 

used.  For example, if an NFG requires 169 MULT18x18s, it could be possible to 

implement it on a single FPGA by building the additional 25 multipliers from CLBs. 

However, the models do not take this into account.  Thus, when the HUP for a particular 

NFG reaches 100%, it shows that the models will not be able to accurately represent 

complexity and delay for larger NFG sizes.   

When a particular logic device uses all three resources proportionally (i.e. 

SUP=MUP=BUP), then the HUP function behaves linearly.  When only one resource is 

consumed the HUP function behaves like a cubed-root function.  The cubed root function 

still offers a meaningful relation between hardware utilizations of NFGs that use different 

resources.  As more hardware is used, the HUP increases.  The HUP increases slightly 

less than it would if all resources are consumed proportionally.  Figure 13 shows an 

example where the hardware resources are used proportionally (i.e. MUP=SUP=BUP), 

where slices are used without any other resources (BUP=MUP=0), and where slices and 

MULT18x18s are used proportionally but without any BRAMs (MUP=SUP, BUP=0). 
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Figure 13 HUP vs. SUP for Various BUPs and MUPs. 
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Since the variables SUP, MUP and BUP are weighted evenly within the 

HUP equation, the same relationships apply when a single resource is used, regardless of 

what resource is used.  In general, arithmetic components do not consume all three 

resources proportionally. Multipliers consume MULT18x18s and CLBs in uneven 

proportions, and coefficient tables consume BRAMs and CLBs in uneven proportions.  

The majority of the arithmetic components analyzed in this thesis consume only one type 

of resource.  Figure 14 shows another example where the BUP=SUP for various MUP.  

When the MUP=0, the HUP curve shows two resources being consumed proportionally.  

When MUP=50%, note that the HUP begins at approximately 20%.  Thus, when 50% of 

the MULT18x18s are used, it is considered that at least 20% of the total FPGA resources 

are used.  When 95% of the MULT18x18s are used, at least 90% of the total hardware is 

used.   
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Figure 14 HUP versus SUP where BUP=SUP for various MUPs. 

 

It should be noted that the HUP equation in Table 2 does not exhibit 

desirable properties when SUP, MUP, or BUP are greater than 100%, thus the MATLAB 

function HUP.m caps each at 100%.  This produces a maximum HUP of 100%.  When 

HUP = 100%, it indicates that the complexity and delay of the NFG being analyzed is not 

accurate because there are not enough of at least one of the resources that it needs. 
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3. Measuring Propagation Delay 

The goal of this section is to determine how to accurately measure the 

propagation delay of a given circuit, without having to build that particular circuit and 

simulate it.  Signal propagation delay depends on the path over which the signal 

propagates.  Thus, the general architecture of the circuit must be understood in order to 

know what delays are encountered by a given signal.  In this section, we are concerned 

with finding the longest propagation delay for each particular circuit.  In cases where 

architectures are simple, such as the adder (section E.1), accurate expressions are 

straightforward.  For other cases, such as the multiplier (section E.2), data is collected 

from simulation results and estimates are made to represent missing data.  In both cases, 

it is important to understand the source of the delays.  Timing data was acquired using a 

low-level synthesis tool in Xilinx ISE Project Navigator.  In some cases, it was simple to 

correlate the timing data from the synthesis reports to the data supplied in [18].  In other 

cases, timing data from the synthesis reports alone was used.  The following delays are 

discussed to better understand their contribution to propagation delay.   

a. Net Delay 

Net delay ( )nett  is common to all circuits designed on FPGAs.  Net delay 

is a propagation delay that is due to transferring charge along a wire.  It is proportional to 

the size of the wire or conductor and inversely proportional to drive strength of the 

associated power supply.  DC power supplies can only supply a limited amount of 

current.  On an FPGA, the drive strength for a given node is dependent on what driver, 

such as a logic gate, register or IOB, is connected to the node.  The time it takes to charge 

a given wire to a desired voltage is also dependent on the fanout of the driver.  If the 

driver supplies charge to more inputs, then more charge is required, resulting in a longer 

time delay for the entire wire to build to the required voltage.  Figure 15 shows an 

example of a schematic circuit built in Xilinx Project Navigator to collect net delay data 

for various fanouts.  Appendix B.2 contains the data collected for net delays. 
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Figure 15 Schematic Example of Various Fanouts. 

 

When designing arithmetic logic devices, the net delay is significant 

because some architecture have relatively large fanouts.  Net delays on the Xilinx Virtex-

II XC2V6000 FPGA with speed grade of -4 ranges from 0.517 ns to 1.316 ns based on 

synthesis reports for various circuits.  Figure 16 shows the net delay versus fanout that is 

generated by the function fillLin when given the collected data as an input.  Although the 

net delay is generally smaller than the delay of logic components, when multiple logic 

stages with high fanouts are cascaded, the associated net delays can be a significant 

contribution to the total combinational delay of the circuit.   
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Figure 16 Net Delay vs. Fanout after fillLin. 

 

When estimating propagation delays for various arithmetic devices (see 

Section E in this chapter), the file HUandDelay includes the net delay going into the 

particular device. However, it excludes the net delay associated with the output because it 
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depends on the number of inputs driven by the output. This simplifies the calculation of 

propagation delays for composite circuits.  Figure 17 illustrates the propagation delays 

associated with combining two arithmetic devices in series.  The total propagation time 

through the composite circuit is ,1 ,1 ,4 ,2prop net comb net combt t t t t= + + + , where ,nett κ  is the net 

delay associated with a fanout of κ , and ,comb jt is the combinational delay of the j-th 

arithmetic device in series.   

Device 1

fanout = 1

Device 2

fanout = 4

,1nett ,4nett,1combt ,2combt

Device 1

fanout = 1

Device 1

fanout = 1

Device 2

fanout = 4

,1nett ,4nett,1combt ,2combt
 

Figure 17 Propagation Delay for Arithmetic Devices in Series. 
 

When arithmetic devices are placed in parallel, the fanout of the input 

wires becomes the sum of the fanouts of each device, and the net delay for each device 

requires adjustment.  If not, small errors (up to 0.8 ns) are introduced in propagation 

delay estimations every time devices are placed in parallel.  In most NFGs, this error is 

insignificant, but this thesis uses the correct net delays.  Figure 18 illustrates how this 

error affects the propagation delay of the composite circuit.   
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Figure 18 Propagation Delay for Arithmetic Devices in Parallel. 
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b. LUT Delays  

LUT delays are the propagation delays associated with a signal 

propagating from the input of LUT (or function generator) to the output of the LUT.  

LUT delays are denoted as LUTqt , where q∈  and 1<q<6.  [18] reports 4LUTt to be 

0.44ns, and synthesis reports demonstrate this value to be 0.439ns.  The delay is the same 

for LUTs even if all four inputs are not used.  Thus, 1 2 3 4LUT LUT LUT LUTt t t t= = = .  Five-

input LUTs can be formed using two 4-input LUTs and a specialized MUX within the 

same slice.  According to [18], 5 0.72LUTt ns= .  The additional delay is due to the MUX 

that is needed to combine two 4-input LUTs to form a 5-input LUT.   

c. Delays in Special Purpose MUXs 

As discussed previously, there are various MUXs in each slice that can be 

configured for use in design of a logic circuit. This section identifies some of the 

propagation delays associated with the MUXs that are used in the arithmetic devices in 

this thesis.   

MUXCY, shown in Figure 8 provides a path for fast carry logic used to 

implement an adder.  The two delays of concern are  ,MUXCY S Ot →  and , 0MUXCY I Ot → .  The first 

delay, ,MUXCY S Ot → , is the time it takes to change the output O, after the select line S 

changes.  The second, , 0MUXCY I Ot → , is the propagation delay of a signal from input I0 to 

the output O.  Empirical evidence from Xilinx ISE Project Navigator confirms data from 

[18] for the values in Table 3 

 

Parameter Time delay (ns)

, 0MUXCY I Ot → 0.053 

,MUXCY S Ot →  0.298 

Table 3 MUXCY Propagation Delays. 
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MUXFX is designed to combine signals from multiple slices into a single 

output.  This is useful when constructing functions of more than 4 variables.  For 

example, instead of cascading multiple layers of 2:1 MUXs built from LUTs, larger 

MUXs are constructed from the built-in MUXFXs.  This eliminates the net delays 

associated with interconnecting LUTs.  For example, a 4-input function takes 0.44ns plus 

a net delay to produce a result, while a 5-input function takes only 0.72ns and a net delay 

(vice 2 0.44 0.88x ns ns= and two net delays for two cascaded LUTs).   

d. IOB Delay 

Timing data was acquired using a low-level synthesis tool in Xilinx ISE 

Project Navigator.  The synthesis includes estimated routing delays (net delays), 

combinational delays, and Input/Output Buffer (IOB) delay.  Since NFGs would most 

likely cascade multiple arithmetic and/or memory units together, IOB delay data is 

removed from the total delay for the particular component.  For example, the total delay 

of an NFG that is comprised of a RAM unit propagating into a multiplier, then into an 

adder, is the sum of the combinational delays of each component and the estimated 

routing delays.  The low level synthesis provides timing data along the longest 

combinational path, and includes the IOB delays, net delays, and combinational delays 

based on the routing through each slice.  The data collected in LoadISEDeviceData 

removes the IOB delays and contains the net delays. 

D. ESTIMATING PARAMETERS FOR VARIOUS BASIC ARITHMETIC 
LOGIC COMPONENTS 

Various NFG configurations require various arithmetic logic devices in series 

and/or in parallel.  This section discusses measuring the complexities and propagation 

delays for common arithmetic logic devices applicable to NFGs.  It describes simple 

architectural designs for several circuits, which are not necessarily the most efficient or 

compact designs.  The goal is not to find the best case hardware design, but to use 

commonly accepted methods to build basic arithmetic circuits in order to compare  
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complexities and propagation delays.  The measurements of the arithmetic circuits in this 

section are used to measure the overall complexity and delays for the NFG configurations 

that are built from them.   

The author’s MATLAB function HUandDelay.m calculates the SUPs, MUPs, 

BUPs, and delays of several components.  These parameters are calculated based on the 

particular component having n input bits and w output bits.  The number of output bits is 

only used for memory components and SIEs.  Table 4 summarizes each function handled 

by HUandDelay. 

 

Inputs variables Output Variables : 

n,w Device Name SUP, MUP, BUP and propagation delay for a(n): 

n,w  ‘ROM’ 

‘LUT’ 
n-input w-output function, or a single bit ROM with n address lines ( 2n x w ROM).  

n,w ‘Adder’ adder with 2 input vectors of length n and a carry in bit, and a single output vector  

of length n, plus a carry out bit.  Note: w is not used. 

n,w ‘Mult’ multiplier with 2 input vectors of length n, and a product vector of length 2n (built 

from CLBs only, no MULT18x18s are used) 

n,w ‘Mult18x18’ multiplier with 2 input vectors of length n, and a product vector of length 2n (built 

from CLBs and MULT18x18s) 

n,w ‘MUX’ n:1 MUX, with 2logn n+ ⎡ ⎤⎢ ⎥ input bits, and 1 output bit 

n,w ‘BarrelShifter’ n-bit barrel shifter with 2logn n+ ⎡ ⎤⎢ ⎥  input bits and n output bits 

n,w ‘BRAM’ memory unit constructed from onboard BRAM units, with n address bits in, and w-

bits out ( 2n x w RAM). 

n,w ‘SIE’ Segment index encoder with n input bits, and w output bits. 

n,w ‘SOP’ worst case Sum of Products logic circuit with n inputs and w output bits 

n,w ‘Mem’ best case memory unit constructed from BRAMs or from ROMs, 2n x w ROM 

Table 4 Summary of “HUandDelay” Operations. 
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The component designs do not necessarily represent the best case design or the 

worst case design.  They are merely working designs that have been constructed from 

either behavioral VHDL models or from schematic models that can be implemented 

efficiently onboard the FPGA.  Bit widths up to 129 bits wide are analyzed.  

1. Adders and Subtractors  

Adders and subtractors are commonly used arithmetic logic devices.  Since a 

subtractor can be constructed with almost equivalent complexity to an adder, only the 

adder architecture is analyzed.  For NFGs that require subtractors, adders are substituted 

because they exhibit the same characteristics. 

a. Architecture 

Xilinx FPGA architecture has been specifically designed for fast 

mathematic operations, including additions and multiplications.  Fast carry chains are 

built in columns that run through each slice via fast MUXs, namely the MUXCY (see 

Figure 8).  The propagation delay from one bit to the next is approximately 53 ps.  Even 

large RCAs can compute a large number of bits relatively quickly.  Each fast carry chain 

can be 176 bits long [18].  This means that the carry propagation portion of the adder’s 

delay is only 9.3 ns for a 176-bit adder.  Longer carry chains can be constructed by 

connecting the last carry out to another fast carry chain, but associated net delays are 

attached.  However, an adder wider than 176-bits is not generally required in NFGs.  

Contrary to conventional logic design, using Carry Look-Ahead (CLAH) architecture 

actually produces slower adders due to the additional XOR logic depth.  Figure 19 shows 

how a single bit full adder is implemented using a LUT, MUXCY, and XOR within half 

of a slice.  Note that each LUT is configured as a two-input XOR gate, having the same 

delay as a 2-input LUT, 2LUTt . 
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Figure 19 Single-bit Full Adder Implemented on Virtex-II FPGA. 

 

b. Complexity Analysis 

The goal of this complexity analysis is to find an accurate method to 

quantify hardware utilization for adders based on the size of the adder.  Figure 20 shows 

the logic and carry path of an n-bit full chain implemented in 
2
n⎡ ⎤
⎢ ⎥⎢ ⎥

slices.  Thus, an n-bit 

adder occupies 
2
n⎡ ⎤
⎢ ⎥⎢ ⎥

 slices.  Empirical data in the synthesis reports also confirms this 

relationship.  The number of slices is calculated using the ceiling function in the author’s 

function HUandDelay (Appendix A.2) and is used to find the SUP (Table 2).  Because 

adders do not use MULT18x18s or BRAMs, the function returns MUP=0 and BUP=0 for 

an n-bit adder.   

c. Delay Analysis 

The propagation delay of an RCA is linear.  Behavioral models for adders 

implement RCAs on the Virtex-II, so the propagation delay is expected to be linear.  Data 

collected from the synthesis reports confirm this for n > 4.  The data used for propagation 

delays does not include IOB delays, but does include net delays.  By tracing the 

propagation path given by the synthesis reports, as shown in Figure 20, the total delay is 

derived to be ( ), 0 2prop MUXCY I O overheadt t n t→= − + , where , 0 0.053MUXCY I Ot ns→ =  and 

2.528overheadt ns= .  According to [18], the carry delay through the fast MUXCY from 

input I0 to output O is 0.05 ns, correlating the theoretical expectation and empirical data 

to the manufacturer’s specifications.  Also, there is no carry propagation in a single-bit or 
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a 2-bit adder since they are within the same slice.  For larger RCAs, the first and last 

MUXCY do not lie in the longest propagation path.  Thus, the delay along the carry 

propagation path is proportional to n-2, and the overhead delay accounts for the rest of 

the time delay through the RCA.  Figure 20 shows the total propagation delay path 

through a RCA implemented on the Xilinx Virtex-II XC2V6000 FPGA.    

(n-2)*tMUXCY,I0 O

=(n-2)*0.053 ns

tMUXCY,s O=0.298 ns

tLUT2=0.439 ns

tnet(1)=0.517 ns

tXORCY=1.274 ns

(n-2)*tMUXCY,I0 O

=(n-2)*0.053 ns

tMUXCY,s O=0.298 ns

tLUT2=0.439 ns

tnet(1)=0.517 ns

tXORCY=1.274 ns

 
Figure 20 An n-bit RCA Propagation Delay Path on Xilinx Virtex-II. (After [18]). 
 

The remaining portion of the equation can be verified by breaking down 

overheadt  into the delays of the other logic components with the slices containing the LSB 

and the MSB.  Switching characteristics for these components (in [18]) correspond to the 

signal path delays found in the synthesis reports.  For 

example, (1) 2, ,overhead XORCY net LUT IO O MUXCY S Ot t t t t→ →= + + + , where 1.274XORCYt ns= , 

(1) 0.517nett ns= , 2, 0.439LUT IO Ot ns→ = , and , 0.298MUXCY S Ot ns→ = .  The explanation of 

these terms can be found in [19], but are illustrated in Figure 20.  The synthesis reports in 

Appendix B.1 show the delay of each component in the overhead common to all n-bit 

RCAs.  Since a linear equation can accurately (to within 0.01ns) represent the simulation 

data, the author’s MATLAB function HUandDelay returns the propagation delay of an 

n-bit RCA by calculating it with the same linear equation instead of using a table of 

referenced values.  This allows a simple calculation to accurately return a valid 
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propagation delay for a given RCA size n.  Figure 21 shows the overall SUP and 

propagation delay for adders versus the size of the adder.   
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Figure 21 SUP and Propagation Delay for n-bit RCAs. 

 

2. Multipliers 

In order to understand hardware utilization and propagation delays for multipliers, 

it is necessary to understand their architecture 

a. Architecture 

Array multipliers generally require partial product generators (PPGs) and 

PP adders.  Figure 22 shows the general architecture of an n-bit multiplier using PPGs 

and RCAs.  The hardware utilization percentage (HUP) and propagation delay of an nxn-

bit array multiplier depend on the number of PP multipliers required and the number of 

PPs that need to be added together.  Relatively large multipliers may need to be analyzed 

for some of the applications in this paper.  Xilinx’s Virtex-II XC2V6000 FPGA includes 

144 18x18-bit signed multipliers.  Each one can be used as an nxn-bit multiplier for n< 

18, or as a PPG for larger multipliers.   
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Figure 22 General nxn Array Multiplier Architecture. 

 

The size of an array multiplier depends on the number of bits being 

multiplied.  It also varies depending on the size of the PPGs.  The most basic PPG is the 

1x1 bit multiplier, which is an AND gate.  A 2x2 bit multiplier is a 4-input to 1-output 

function, which can be realized in four LUTs.  Since the number of function inputs grows 

proportional to 2n , the multiplier becomes very complex for larger PPGs if LUTs are used 

to realize the function.  An nxn-bit multiplier designed with the architecture in Figure 22, 

requires 
2n

r
⎡ ⎤
⎢ ⎥⎢ ⎥

 PPGs and 2 1 1n n
r r

⎛ ⎞⎛ ⎞⎡ ⎤ ⎡ ⎤− +⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠
 r-bit adders.  Figure 23 illustrates the 

proportionality of multipliers’ SUPs to 
2n

r
⎡ ⎤
⎢ ⎥⎢ ⎥

. As r gets smaller, more adders are required 

to sum the partial products.  Figure 23 shows the HUP and propagation delays for a 

multiplier with r=4 built from 4-bit PPGs and 4-bit RCAs.  It compares them to 

multipliers built using the MULT18x18s.  Using MULT18x18s reduces the SUP for a 

multiplier, but also increases the MUP (see Table 2). 
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Figure 23 Multiplier HUP and Delay vs. Multiplicand Size for Multipliers Built with 

MULT18x18s vs. CLBS. 
 

Figure 23 shows that it is more efficient to develop large multipliers using 

the MULT18x18s on the Virtex-II FPGA.  Here, the lower line represents multipliers 

built from MULT18x18s only, and the upper line represents multipliers built from LUTs 

only.  Each one can be used as an nxn-bit multiplier for n< 18, or be an r-bit PPG for 

larger multipliers, where r <=17.  Doing so takes advantage of the benefits discussed in 

section A.1.b.  The propagation through each PPG is a linear function of n
r
⎡ ⎤
⎢ ⎥⎢ ⎥

.  For 

multipliers with n>17, all of the PPs can be calculated in parallel.  This makes it more 

time-efficient to split n-bit multiplicands into n
r
⎡ ⎤
⎢ ⎥⎢ ⎥

-bit multiplicands for each PPG, rather 

than using the maximum number of bits in a single MULT18x18 with fewer bits in the 

other required MULT18x18s.  For example, if a 24x24 bit multiplier is required (Figure 

24), it takes less time to compute four 12x12-bit multiplications in parallel using the 

MULT18x18s than it takes to compute one 17x17-bit multiplication in parallel with two 

7x17-bit multiplications and a 7x7-bit multiplication (Figure 24).  This is because the 

delay of the 17x17-bit multiplier takes longer than any of the other multiplications 

because the MSB of its product would come off of pin 34.   
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Figure 24 24-bit Multipliers with Uneven and Even PPs. 

 

Since modern FPGAs incorporate multipliers, this analysis is usable for 

many other hardware applications as well.  Array multipliers may be better designed 

using combinational logic.  However, large multipliers require a larger portion of the 

CLBs on the FPGA and a much longer propagation delay.  It is more efficient to use a 

few of the onboard MULT18x18s so that the CLB resources are available for other 

required logic devices.  A 32x32 bit multiplier built from combinational logic consumes 

24.9% of the slices on the FPGA and takes 29.9 ns to produce a result.  The same 

multiplier built using MULT18x18s consumes only 0.14% of the slices and 2.8% of the 

MULT18x18s, and has a propagation delay of 17.7 ns.  Since the objective is to establish 

a basic way to compare NFGs, and not to develop the most efficient nxn-bit multiplier, 

using the MULT18x18 onboard the FPGA as PPGs is a sufficient and reasonable method 

to build large multipliers, and results in a shorter propagation delay.   

b. Complexity Analysis 

Determining the size of a multiplier is much more complicated than the 

size of adders.  For multipliers with n<18, a single MULT18x18 can be used, thus the 

percentage of MULT18x18s used, or MUP, is 1 0.7%144 ≈ .  When more than one 

MULT18x18 is required, r-bit adders are required to sum the PPs.  These r-bit wide PP 

adders consume CLBs.  Therefore two parameters must be measured for any circuit 
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design that incorporates the on-chip MULT18x18s: MUPs and SUPs.  If either the MUP 

or the SUP exceeds 100%, then the circuit being implemented will not fit on the FPGA.  

The HUP is shown in Figure 23. 

Because array multipliers can be very complex, and can be constructed in 

various ways, it is not feasible, nor necessary, to dive deep into the architecture to 

analyze complexity in terms of CLBs.  The adder is described in such a way that the 

architecture and product specification validated simulation results from the synthesis 

reports.  Since simulation data was proven accurate for adders, it is assumed accurate for 

multipliers.  Thus behavioral models of unsigned multipliers were designed and 

synthesized using ISE Project Navigator for various word widths.  The synthesis reports 

provide the number of slices and MULT18x18s required, validating the quantity 
2n

r
⎡ ⎤
⎢ ⎥⎢ ⎥

estimated in the architectural analysis above.  These values are included in 

Appendix B.2, and are imported by HUandDelay to estimate hardware utilization using 

the linear approximation function fillLin. 

c. Delay Analysis 

For small multipliers, where n<18, the propagation delay is that of a single 

MULT18x18.  Larger multipliers require multiple adders or adder trees. Again, the 

design of the multiplier can vary widely, which affects the delay.  So to provide a simple 

method to provide relevant data, timing data is collected from the synthesis reports for 

the behavioral models.  The propagation delays for various multiplier sizes are provided 

in Appendix B.2 and displayed in the graph in Figure 23.   

3. Multiplexers (MUXs) 

The NFG models in this thesis do not use MUXs.  However, they are analyzed 

here so that future models can incorporate them.  MUXs often perform vital functions 

(such as data signal routing) in arithmetic logic devices.  For example, in a floating point 

systems [23], MUXs can be used to select an output from either a computed value or 

from a special number value (exact 0, NaN, ±∞ ) based on the whether or not the input is 
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a special number value.  An n:1 MUX has n input bits, and routes only one of these 

inputs to the output bit depending on the bits used for selection.  The number of selection 

bits required is 2log n⎡ ⎤⎢ ⎥ .  For example, a 16:1 MUX has 16 input bits (I0-I15) and 4 

selection bits (S0-S3).  To route input bit I7 to the output, the selection bits must be 

01112, or 710.   

a. Architecture 

The Virtex-II architecture supports fast multiplexing by joining the LUTs 

within each CLB with MUXs built into each slice, thus minimizing propagation delays 

due to connecting to logic blocks in other CLBs.  The delay is a nonlinear function with 

respect to size.  By configuring each LUT to realize a 2:1 MUX, 1 slice can realize a 4:1 

MUX by using the specialized MUXF5.  Adjacent slices can be combined to form larger 

MUXs using the specialized MUXFX within each slice.  Figure 25 illustrates the 

architecture of a 16:1 MUX built within a single CLB, or 4 slices.  MUXs with n>16 can 

be built by combining multiple 16:1 MUXs with other MUXs.   

 
Figure 25 16:1 MUX within a Single CLB.  (From [18]) 
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b. Complexity Analysis 

Since four slices can implement a 16:1 MUX, the number of slices 

required in an n:1 MUX is 
4
n⎡ ⎤
⎢ ⎥⎢ ⎥

.  To validate this approximation of hardware utilization 

based on the n, schematic models of MUXs where constructed in Xilinx ISE Project 

Manager.  The schematics implement primitive MUXs included in Xilinx’s library.  The 

largest primitive MUX is a 16:1 MUX, which corresponds to the architecture described 

above.  Larger MUXs were built by combining the primitive MUXs.  For example, a 32:1 

MUX was constructed by coupling two 16:1 primitive MUXs with a 2:1 primitive MUX.  

This method assures that an n:1 MUX is constructed in a compact manner.  Synthesis 

reports for the schematic designs provided the data in Appendix B.2.  The slice utilization 

data confirmed the estimates from the architectural description.  The SUP for an n:1 

MUX is calculated using the equation in Table 2.  Since no MULT18x18s or BRAMs are 

used, MUP=0 and BUP =0 for all MUXs analyzed in this thesis.   
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Figure 26 SUP vs. MUX size (bits). 

c. Delay Analysis 

The propagation delay through a large MUX depends on the number of 

MUX levels, and the delay through each particular MUX.  Since different MUXs are 

used within each CLB, they each have a different propagation delay.  The number of 
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MUX levels is 2log n⎡ ⎤⎢ ⎥ .  The synthesis reports provide propagation delay data for various 

MUX sizes.  The data confirms the logarithmic relation between n and propagation delay.   
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Figure 27 Propagation Delays vs. MUX Size (bits). 

 

4. Barrel Shifters 

Like MUXs, barrel shifters are not used in any of the models in this thesis.  

However, they are analyzed here because they may prove useful in reducing hardware 

complexity and delay for linear NFGs that restrict its slope coefficients ( 1ic ) to a power 

of 2.  Barrel shifters can be used to realize multipliers when one of the multiplicands is a 

power of 2.  They can be significantly faster and require fewer slices than a general 

multiplier.  A basic n-bit barrel shifter consists of n n:1 MUXs in parallel.  It shifts bits 

from the MSB into the LSB, or vice versa.  A small amount of additional logic is needed 

to convert the basic barrel shifter into an arithmetic or logical combinational shifter.  

a. Architecture 

Figure 28 shows the general architecture of an n-bit barrel shifter, 

including the fanouts along the propagation paths.  The darkened MUXs indicate that 

they can be considered a part of an n:1 MUX, multiplexing all inputs to a single output 

bit.  The easiest method to build a barrel shifter would be to use n n:1 MUXs in parallel, 

one for each output bit.  This is a naïve method since it does not reuse the 2:1 MUXs that 

can be reused.  A better architecture is shown in Figure 28, containing 2log n columns of 

n 2:1 MUXs.   
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Figure 28 Barrel-shifter Architecture. 

 

b. Complexity Analysis 

An n-bit barrel shifter constructed in the naïve manner would consume n 

n:1 MUXs, or 
2

4
n⎡ ⎤
⎢ ⎥
⎢ ⎥

 slices.  The more hardware efficient method results in 2log
4
n n⎡ ⎤
⎢ ⎥⎢ ⎥

 

since each 2:1 MUX in Figure 28 can be constructed from a single LUT.  The function 

HUandDelay uses the latter method. 

c. Delay Analysis 

The delay of an n-bit barrel shifter is closely related to the delay of an n:1 

MUX.  Because the shift-by-1 MUX select line must be distributed to all n 2:1 MUXs in 

the first column, the fanout of this line is n.  Since the longest propagation path contains 

this select line, then a net delay based on that n, instead of 1, must be accounted for.  

Therefore, the barrel shifter’s propagation delay is the same as an n:1 MUX plus the 

difference in net delays, or , , ( ) (1)prop BarrelShifter prop MUX NET n NETt t t t= + − .  This equation is used 

in the function HUandDelay to return the propagation delay for an n-bit barrel shifter. 
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5. General Logic Functions 

This section discusses various methods to implement general functions based on n 

inputs and a single output.  These types of function may be used in NFGs as segment 

index encoders and relatively small coefficient tables.   

a. Generic n-Input Functions 

In the worst case, any n-input function can be realized with an n-input 

lookup table (LUT), which is functionally a ROM.  The amount of required memory cells 

is 2n  per bit.  Most functions can be reduced to smaller logic functions, so 2n  represents 

the upper bound of the required memory units.  In Xilinx’s Virtex-II FPGA, each LUT 

has 4-input bits, thus can represent a 4-input 1-output function or a 16x1 ROM.  Thus, the 

number of LUTs required to realize any n-bit function or a 2n x1 ROM is 42n− .  Single-

port RAM requires the same amount of LUTs, but can be read and written. 

The delay of a 4-variable function realized by one LUT is 0.44ns [18].  

The FPGAs are organized such that a 5-input function can be realized with in one slice, 

without having to cascade the delays, thus yielding a 0.72ns delay for a 5-input function.  

The overall delay through an n-bit ROM from an input to an output depends on whether 

the complete function is designed using cascades of 4-bit functions or 5-bit functions.  

Larger functions require combining 4 or 5-input functions with a MUX large enough to 

accommodate a total of n input bits.  For the purpose of NFG comparisons, a ROM 

performs the same function and utilizes the same hardware as an n-input function.  Thus, 

ROM primitives were constructed schematically in ISE Project Manager.  The synthesis 

reports provided timing and hardware utilization data for ROM with up to 7-bit 

addresses.  Larger ROMs are constructed from the largest ROM primitive.  Thus, an n-

address bit ROM requires 72n−  7-bit address ROMs and a 72n− :1 MUX.  An example 

architecture is shown in Figure 29.  HUandDelay imports timing data for the primitive 

ROMs from the data set in Appendix B.2, and recursively calls itself to find the 

additional hardware and propagation delay of the required MUX.  The propagation delay 

takes into account the delays from the ROM, the MUX, and the net delay associated with 
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connecting the two devices together.  Figure 30 shows the hardware utilization and 

propagation delay of an 2n x1 ROM.  Note that for n> 14, it is more efficient to use 

BRAM for implementing a large LUT instead of consuming a large number of slices.  

HUandDelay automatically selects BRAM implementation for LUTs with n larger than 

14.   
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Figure 29 An n-input Function Using 7-bit Address ROMs and a 72n− :1 MUX. 
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Figure 30 LUT SUP and Delay vs. Number of Address Bits for a ROM. 
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b. Sum of Products (SOP) Functions 

A sum-of-product is a logic function of the form 
1 1

iqp

i
i j

g
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∏  where p is 

the number of terms, q is the number of inputs into a term, and g is each input bit.  

Significant hardware and propagation delay reductions can be realized when a particular 

n-input function can be represented in a SOP form.  The Virtex-II architecture is designed 

to efficiently implement wide SOPs.  It is a difficult problem to determine the complexity 

of SOPs for logic functions.  Benchmark functions tend to have small SOPs [22].  

  

 
Figure 31 SOP implemented on Virtex-II.  (From [18]) 

 

From analyzing Karnaugh Maps [21][22], the worst case SOP for an n-bit 

input requires 12n− n-input minterms.  If the LUTs in Figure 31 are configured to be 4-

input LUTs, product minterms can be formed n bits wide, requiring 
4
n⎡ ⎤
⎢ ⎥⎢ ⎥

LUTs per 

product term.  Since the number of minterms required for a worst case logic function 

is 12n− , then the entire SOP circuit requires 12
4

n n− ⎡ ⎤⋅ ⎢ ⎥⎢ ⎥
 LUTs, or 22

4
n n− ⎡ ⎤⋅ ⎢ ⎥⎢ ⎥

 slices.  The 

propagation delay is 1
,1 4 , , 0 2

4
n

prop net LUT MUXCY S O MUXCY I O ORCY
nt t t t t t−

→ →
⎡ ⎤= + + + ⋅ + ⋅⎢ ⎥⎢ ⎥

, see 
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Appendix C.2 for explanation of terms.  These equations are used by HUandDelay to 

estimate propagation delay and hardware utilization.   
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Figure 32 HUP and Propagation Delay for n-input LUTs and n-input worst case 

SOP. 
 

After analyzing the estimations in Figure 32, it is apparent that when the 

actual function being realized is not known, it is much more appropriate to use LUTs 

instead of SOPs.  However, when specific functions are reduced to small SOPs, the 

worst-case SOPs are not implemented, and a significant speed-up can occur with a 

reduction in hardware utilization.  Consider a function that can be reduced to a sum of 4 

midterms, where each minterm has 16 inputs (Figure 31).  The number of slices required 

is 4 16
4
n⎡ ⎤× =⎢ ⎥⎢ ⎥

LUTs, or 8 slices.  The corresponding HUP is 0.0079%.  The propagation 

delay ,1 4 , , 0 4 2.924
4prop net LUT MUXCY S O MUXCY I O ORCY
nt t t t t t ns→ →
⎡ ⎤= + + + ⋅ + ⋅ =⎢ ⎥⎢ ⎥

.  The same 

function implemented using a 16-bit LUT requires 4 BRAMs, or a HUP=0.93%, with a 

delay 7.06ns.  Thus, when specific n-input functions are known and can be reduced to 

SOP, it may be much more efficient than using an n-input LUT. 
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6. Address Encoders/Segment Index Encoders (SIEs) 

Address encoders are used in NFGs as Segment Index Encoders (SIEs) for NFGs 

with non-uniform segmentation.  They determine in which segment an input variable x 

lies, and thus determines the memory location of the coefficients used in NFG 

calculations.  The inputs to the encoder may be all or just some of the bits of the input 

variable x.  It is much more difficult to estimate hardware utilization and propagation 

delay for an SIE, because the size depends on two variables: the number of input bits, n, 

and the number address lines for the coefficients table, k. The SIE is referred to as an n:k 

SIE. 

a. Architectures 

The most generic address encoder is shown in Figure 33.  SIEs are not 

required for NFGs that use constant width segmentation because appropriate bits of x can 

be used as address lines to the coefficient memory [12].  For NFGs with non-uniform 

segmentation, the number of segments required mins  is determined by segmentation 

algorithms.  Segmentation algorithms take into account the function being realized by the 

NFG, the number of system bits, and the required accuracy of the system.  They return 

the number of segments mins  and the appropriate coefficients to be stored in the NFG’s 

coefficient table.  The architecture of the Virtex-II requires memory sizes to be a power 

of 2 when using BRAMs.   Thus a particular NFG should use 2ks = segments, where k is 

the number of address lines to the coefficient memory, and 2 minlogk s= ⎡ ⎤⎢ ⎥ .  A detailed 

discussion about segmentation methods can be found in [5]. 
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Figure 33 Generic Address Encoder. 



 52

A generic address encoder requires at most k n-input functions, for an n-

bit wide x.  For most common NFGs, this generic method would consume an enormous 

amount of hardware.  The size of an n-bit function is ( )2nO , thus a generic address 

encoder built in this manner would be ( )22 lognO s⎡ ⎤⎢ ⎥ . Consider an NFG with a 16-bit 

input x that requires s=1024 segments, or k =10.  HUandDelay estimates that each 16-

input function uses 2.78% of the BRAMs.  This means that the SIE requires 27.8% of the 

BRAMs.  Now consider an NFG with a 24-bit input and the same number of segments.  

The number of BRAMs required per function is 711.1% of the total available BRAMs.  

Therefore, 10 functions require 7111% of the BRAMs.  In fact, an NFG with 1024 

segments cannot be implemented on the Virtex-II XC2V6000 unless x is less than 18 bits 

long.  Implementing a general address encoder using a SOP structure is impractical as 

well, since the worst-case number of required slices is 22
4

n n− ⎡ ⎤⋅ ⎢ ⎥⎢ ⎥
. An SOP for a 16-bit 

input single-bit output requires 193.9% of the slices on a Virtex-II XC2V6000 FPGA.   

Since it is impractical to construct a reasonably large SIE from k n-input 

functions or even from a SOP architecture, it is better to estimate general SIEs using LUT 

cascades [10][12][14][15].  LUT cascades require 12 ( )k k n k+ × −  memory bits, where 

2 minlogk s= ⎡ ⎤⎢ ⎥  and mins  is the number of segments.  The savings in hardware comes from 

the size being ( )O n , instead of ( )2nO  for a general n-input k-output function.  The 

general architecture of a LUT cascade is shown in Figure 34.   
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Figure 34 LUT Cascade Architecture.  (From: [10][11])  

 

The number of inputs into each LUT in the LUT cascade are k+2, the 

number of rails is equivalent to the number of address lines, k.  This architecture 

requires
2

n k−⎡ ⎤
⎢ ⎥⎢ ⎥

 (k+2)-input k-output LUTs [11].  The function HUandDelay calculates 

the propagation delay of the LUT cascade by cascading 
2

n k−⎡ ⎤
⎢ ⎥⎢ ⎥

 (k+2)-input LUTs.  

Because k LUTs are in parallel, the net delay is adjusted because the fanout of the SIE is 

equal to the fanout of each LUT multiplied by k. 
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Figure 35 HUP and Delay for LUT Cascades vs. k for Various n. 
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b. Complexity Analysis 

The author’s function HUandDelay returns hardware utilization 

parameters based on unknown functions.  Therefore, the best general designs are used to 

determine complexity.  Since LUT cascades require less hardware than SOPs and large 

LUTs, HUandDelay uses the architecture described above for LUT cascades to estimate 

the complexity of an SIE. 

c. Delay Analysis 

LUT cascades also exhibit shorter propagation delays for general SIE 

functions than from the other architectures previously discussed.  Therefore, the 

propagation delay estimated by HUandDelay is based on that of a LUT cascade. 

7. Block RAM (BRAM) and Other Memory 

Memory is utilized within NFGs for storing and retrieving coefficients for the 

approximation technique.  Using a ROM as described above is the simplest way to get an 

n-bit addressable memory, but it may not be the fastest.  The Xilinx FPGA includes 

18Kbit BRAM units which can accomplish the same goals with a smaller time delay.  For 

most NFG applications, writing to memory is not required.  Using the BRAMs in read-

only mode can significantly reduce the delay when compared to using LUTs or 

distributed RAM.  Other circuit designs may utilize external RAMs but since there are a 

wide variety of them, it is not feasible to make estimations on them all.  For this reason, 

external RAMs are not analyzed in this thesis. 

a.  Architecture  

BRAM is included on the Virtex-II and is one the main resources 

discussed throughout this thesis.  It provides a relatively large block of memory with fast 

connections to surrounding hardware, including the MULT18x18s.  The downside of 

using the BRAM is that there are a limited number of them (Table 1), and the circuit 

adjoining the block must be arranged close to the BRAM in order to minimize the routing 

delay.  Also, if the desired amount of RAM is less than that contained in one block, then 
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the rest of the block is wasted.  Thus, unless BRAM is used with at least 18Kbits, then 

hardware is wasted.  Two BRAMs in parallel combined with a 2:1 MUX form a 36Kbit 

RAM.  Thus, the number of BRAMs used is 14

2
2

n⎡ ⎤
⎢ ⎥
⎢ ⎥

and the number of levels of 2:1MUXs 

is 2 14

2log 14
2

n

n
⎡ ⎤

= −⎢ ⎥
⎢ ⎥

.  The overall delay is the sum of the delay from the BRAM plus the 

delay of the MUX network required to implement the n-bit address RAM.  

Although each BRAM can have at most 14 address bits, they can be 

configured to use fewer address bits.  Using fewer address bits allows the BRAM to 

contain more than 1-bit per memory location.  Table 5 summarizes the possible BRAM 

configurations.  This thesis compares BRAM usage for various NFG configurations using 

1-bit port data width.  The BUP is dependent on the number of address bits, n (shown in 

“ADDR Bus” column in Table 5), and the word width, w (“Port Data Width” column in 

Table 5).  The number of memory bits stored is 2ns w w× = ×  and is constant, where s is 

the number of segments required by the NFG and n is the number of address lines.  Thus, 

when n is increased, w becomes smaller.   

 

 
Table 5 Virtex-II BRAM Configurations for Single-port RAMs.  (From [18]) 

 

b. Complexity Analysis 

Since there are multiple ways to configure the BRAM for various word 

widths, HUandDelay determines the number of bits of memory required by the 
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equation 2k w× .  The number of BRAM blocks required is 

# of memory bits required 2
# of memory bits per BRAM 16384

k w⎡ ⎤⎡ ⎤ ×
= ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥
.  The required BRAM blocks are multiplexed 

together with a 2 :1
16384

k w⎡ ⎤×
⎢ ⎥
⎢ ⎥

MUX.  HUandDelay calls itself recursively to obtain the 

hardware utilization parameters for the MUX.  It returns the total hardware utilization 

parameters by summing the two.  Note that there will be some wasted hardware (MUXs) 

if the number of BRAM blocks is not a power of 2, but the BRAMs are not wasted.   

c. Delay Analysis 

Analyzing the delay is somewhat more difficult for BRAMs, since they 

are actually synchronous circuits and every other circuit studied so far has been 

combinatorial.  This thesis looks at combining different arithmetic devices in series to 

determine the overall NFG propagation time.  It does not take into account setup times 

and hold times that a sequential circuit would.  For the purposes of this thesis, the delay 

of a BRAM, ,prop BRAMt , is defined as ,prop BRAM NET BCKOt t t= + , where the net delay depends 

on the fanout, and BCKOt  is the delay from the time the clock signal transitions to the time 

when the output data bits are valid.  In this situation, we assume the address bits to the 

BRAM are stable when the clock undergoes a transition.  HUandDelay uses the equation 

above to compute the propagation delay for the BRAM as a pseudo-combinational delay.  

For memories that require more than one BRAM, they are combined with an appropriate-

sized MUX.  HUandDelay also accounts for the required MUX delay.   

E. VISUALLY REPRESENTING COMPLEXITY AND PROPAGATION 
DELAY 

Various m-files are used to plot HU-Delay Graphs, which visually represent the 

components.  These graphs make it easy to compare components versus size and delay at 

the same time, and also compare different components to see which ones take up more 

space.  The delay axis of the HU-Delay Graph represents the timeline on which the signal 
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propagates through a component, or through multiple components.  The HUP (vertical) 

axis is the measure of hardware that is utilize for a particular component or components. 

The author’s MATLAB functions HUPBoxes.m and boxesOrigin.m both 

produce HU-Delay graphs.  However, boxesOrigin.m keeps the bottom-left corner of 

each component centered at the origin, while HUPBoxes.m arranges the components 

based on their dependency relationships. 

1. Comparing the Same Components with Different Sizes 

The HU-Delay Graphs can be helpful when comparing a specific component 

versus size.  Figure 36 compares adders at various word-widths using the function 

boxesOrigin.m.  For example, the delay for a 64-bit adder is approximately 5.8 ns and it 

uses approximately 0.032% of the hardware.   
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Figure 36 HU-Delay Graph of Adders with Various Word-widths. 

 

2. Comparing Arithmetic Components with the Same Number of Input 
Bits 

Figure 37 shows several different components with the same word width.  Notice 

that a ROM built from CLBs with 18 address lines takes up the most space and has the 

longest delay, whereas the 18-bit Barrel Shifter takes the least time and least hardware.  

This type of comparison is useful when comparing two candidate components for a 
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particular NFG.  For example, consider possible NFG architectures for 

implementing 2( )f x x= .  One could use an 18-bit by 18-bit unsigned multiplier, while 

another could simply use BRAM with a total of 18 address lines.  The HU-Delay graph in 

Figure 37 shows the comparison between the two.  Notice that there are tradeoffs to 

consider.  Using the BRAM is faster, but using the multiplier requires less hardware. 
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Figure 37 HU-Delay Graph of Several 18-bit Components. 

 

3. Multiple Components in Series 

Generally, NFGs contain multiple cascaded components.  Linear NFGs provide a 

good example where the components are in series, that is, each component must wait 

until the previous component has completed its computation prior to initiating its own 

computation.  Figure 38 shows an example of a linear NFG with non-uniform 

segmentation using the function HUPBoxes.m.  The bottom-left corner of each 

component is anchored on the delay axis at the end of the delay of the previous 

component.  In the example, the adder must wait until the barrel shift operation is 

complete; the barrel shifter must wait until the multiplier is finished; and so on.  Notice 

that the hardware utilization for each component can be read off of the HUP axis from the 

top of each respective box.  For example, the multiplier takes up roughly 0.95% of the 

FPGA hardware and the SIE takes up roughly 0.7%.  The delay for each component is the 

width of its associated box.  Thus, the SIE takes roughly 12ns to complete, while the 
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BRAM takes 3 to 4ns.  The HU-Delay graph easily shows relative hardware utilization 

and delays for all of its components simultaneously.   

 
Figure 38 HU-Delay Graph of Various Components in Series. 

 

4. Multiple Devices in Parallel 

In some NFGs, calculations can be done in more than one arithmetic component 

at the same time.  The example in Figure 39 shows the exact same components that are in 

Figure 38, but they are arranged in a parallel configuration.  This view allows easy 

detection of which component takes the longest time to propagate.  It also makes it easy 

to see the total hardware utilization for the NFG.   
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Figure 39 HU-Delay Graph of Various Components in Parallel. 
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5. Multiple Devices in Series/Parallel Configurations 

The previous component configurations demonstrate relatively simple NFG 

architectures, but efficiently designed NFGs require multiple arithmetic components in a 

series/parallel combination.  Creating HUP-Delay graphs for more complex NFGs is not 

as simple as the previously mentioned configurations.  In order to combine multiple 

components, it is necessary to know what components depend on the result from other 

components. 

The “dependency” matrix D is a square matrix that contains the dependency 

relationships for all of the components in a particular NFG.  Each row corresponds to the 

particular component in the NFG.  For a given NFG, let κ  be the number of components 

in the NFG.  Thus D is a κ κ×  matrix.  Let ρ represent the index into the list of 

component names, where1 ρ κ≤ ≤ .  A particular component ρ  depends on another 

component η iff , 0Dρ η ≠ .  Figure 40 shows an example of a simple NFG where device 2 

depends on device 1, and device 3 depends on device 2.  The function HUPBoxes.m 

uses the dependency matrix to arrange components in series and/or parallel.  If a 

particular component is dependent on another component completing its computation, 

then it is said to “depend” on that component.  This is particularly useful when 

constructing NFGs where the multipliers require an output from the memory before it can 

begin its computation.  Thus an overall delay can be assessed if components operate in 

parallel.  Since components can depend on more than one other component, HUPBoxes 

places the component in series with the component which finishes the latest, thereby 

computing the longest path delay.  HUPBoxes disregards data in the upper right sector 

triangle to prevent circular dependencies. 
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Figure 40 Example of a Dependency Matrix D. 

 

More complex NFGs are shown in Figure 41a and Figure 41b.  The NFG in 

Figure 41a shows an NFG whose multiplier and BRAM both depend on the SIE.  The 

barrels shifter depends on both the multiplier and the BRAM, and therefore must wait 

until both of them have completed their computation.  Since the multiplier takes longer, 

then the barrel shifter starts after the multiplier is done.  In the example in Figure 41b, the 

barrel shifter depends on the BRAM and not the multiplier, thus it can operate in parallel 

with the multiplier.  Also notice that the adder must wait on the multiplier.   
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Figure 41 HU-Delay Graph of Series-Parallel Composite Device. 

 

F. CHAPTER SUMMARY 

This chapter shows how various arithmetic and logic components (such as 

multipliers and coefficient tables) can be built from the resources on the Virtex-II FPGA 

(CLBs, BRAMs, and MULT18x18s).  It defines terminology for measuring the usage of 
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each resource to be used in comparing components and NFGs.  This chapter also shows 

how simulation results are collected and how fillLin is used to estimate missing data 

points.  This allows relatively accurate complexity and delay estimations for components 

that were not simulated.  The hardware utilization and delay estimations for the 

components computed by HUandDelay are validated in this chapter.  The following 

chapter organizes several components into specific NFG models, using the complexity 

and delay estimations for each component to produce complexity and delay estimations 

for each entire NFG.  Not all of the components in this chapter are used in the models in 

Chapter IV.  For example, MUXs and barrel shifters are not used.  They were analyzed in 

anticipation of alternative NFG models.  Future work might explore the benefits of using 

barrel shifters instead of multipliers in NFGs.  The next chapter describes eight NFG 

models that are commonly described in other resources [8][11][12]. 
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IV. CONSTRUCTING MODELS FOR CURRENT NFG 
ARCHITECTURES 

This chapter outlines how models are constructed to accurately represent 

particular NFGs.  The models below are simple examples of what can be constructed 

from the basic components listed in Table 4.  The term “component” is used throughout 

this thesis to refer to a basic arithmetic device that is used within an NFG.  For example, 

the components of an LUB NFG are a ROM, a multiplier, and an adder.  The models use 

simple assumptions and estimates to reduce the number of variables determining the 

complexity and delay of a particular NFG.   

A. NFG MODEL CONSTRUCTION AND USAGE 

The models in this chapter produce HUP and delay estimations based on two 

known variables: the system size, n, and the number of required segments, s.  The model 

input variable n determines the width of the arithmetic components and contributes in 

estimating the SIE if it is required.  The input variable s, along with the size of the word 

stored in memory w, determine the size of the required memory.  It also contributes to 

determining the size of the SIE (if required).  Each model defines w based on the 

architecture and n.   

This allows any particular model to be independent of a particular function.  

Generally, s depends on n, but the models do not calculate a value for s.  Each model is 

only based on the particular NFG architecture and the required memory size.  The 

architecture provides the type and quantity of arithmetic components required, the sizes 

of each component, and the dependency relationship between the components.  For each 

component in the NFG, the models (i.e. model_*.m) call the author’s function 

HUandDelay.m to retrieve the SUP, MUP, BUP, and delay.   For example, if an NFG 

architecture requires a 17-bit adder, then the model_* file calls HUandDelay, which 

returns the parameters for a 17-bit adder.  Each model then assembles a matrix C 

containing the HUPs and delays for all of its components.  A corresponding dependency 

matrix D is also constructed within each model based on the dependency relationship 
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characterized by the architecture.  These matrices are passed together with a list of 

component names into either HUPboxes.m or totalHUPandDelay.m.  Both functions 

return the total HUP and delay along the worst case delay path.  The only difference 

between the two functions is that the latter does not produce an HU-Delay Graph.   

A feature of the MATLAB code file architecture is that any hardware 

configuration can be implemented as long as it uses the basic components in 

HUandDelay.m.  Any of the models can realize any function, as long as the number of 

segments is known.  In fact, for the same architecture, the only difference between an 

NFG realizing ( )f x  and one realizing ( )g x  is the set of coefficients stored in memory.  

The number of coefficients is proportional to the number of segments, which depends on 

the properties and domain of the function being realized by the NFG.  Therefore, the size 

of the memory and SIE (if required) depend on the function realized on the NFG.  But 

again, the only inputs into HUandDelay.m are s and n.   

B. ESTIMATING THE APPROPRIATE SIZE FOR COMPONENTS 

To make accurate size and delay estimations for NFGs, it is imperative that the 

estimates for its components be accurate as well.  This section describes the assumptions 

made in order to produce a few common NFG architectures. 

1. Estimating the Memory and SIE Sizes 

Memory and SIE sizes are based on the number of segments, s, required.  The 

number of segments depends on the function, the function interval, the type of NFG 

(linear, quadratic, or other) and the precision of the number system.  The function 

segments.m calculates the number of segments required when given a function, 

interval, and number system size.  It assumes the allowable error is 12 nε − −= .  Higher 

accuracies require more segments. 

The number of segments has been determined for several functions and for a few 

commonly-used precisions [4][8][11][13][20].  Some of the data has been collected from 

experimental data and some has been calculated with asymptotic approximations.  
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Relevant data is combined together in 0.  The data can be useful, but it only provides data 

for three values ofε .  It does not provide a general formula for various architecture sizes.  

0 shows the number of segments required for linear uniform (LU), linear non-uniform 

(LN), quadratic uniform (QU), and quadratic non-uniform (QN) NFGs of various n-bit 

systems.  Here, “uniform” and “non-uniform” refer to the segmentation type.   

# of Segments 
172ε −=  

# of Segments 
242ε −=  

# of Segments 

 332ε −=  
# f(x) Interval 

LU LN QU QN LU LN QU QN LU LN QU QN 

1 2x
 [ ]0,1  89 75 8 7 Note1 849 39 35 22717 19008 311 278 

2 1/x [ ]1,2  128 75 17 10 Note1 849 81 50 32773 18996 646 400 

3 x  [ ]1,2  Note1 35 7 5 Note1 388 33 24 Note1 8729 257 189 

4 1/ x  [ ]1, 2
 79 50 11 8 Note1 565 55 36 20066 12684 439 288 

5 2log ( )x  [ ]1,2  109 76 13 9 Note1 853 64 44 27833 19097 506 351 

6 ln(x) [ ]1,2
 91 63 12 8 Note1 710 56 39 23171 15927 448 311 

7 sin( )xπ  
10,
2

⎡ ⎤
⎢ ⎥⎣ ⎦

 
143 109 14 12 Note1 1227 70 58 36397 27361 559 461 

8 cos( )xπ  
10,
2

⎡ ⎤
⎢ ⎥⎣ ⎦

 
143 109 14 12 Note1 1227 70 58 36397 27361 559 459 

9 tan( )xπ  
10,
4

⎡ ⎤
⎢ ⎥⎣ ⎦

 
143 73 18 12 Note1 822 88 58 36397 18371 704 459 

10 ln x−  
1 1,

512 4
⎡ ⎤
⎢ ⎥⎣ ⎦

 
2507 207 794 33 Note1 2356 4017 163 641600 47188 34483 1312 

11 
2tan ( ) 1xπ +  

10,
4

⎡ ⎤
⎢ ⎥⎣ ⎦

 
285 152 30 16 Note1 1721 151 79 72793 38087 1204 631 

12 
( ) 2

2

1 log (1 )
log

x x
x x
− −

−

 
1 1,1

256 256
⎡ ⎤−⎢ ⎥⎣ ⎦

 
34787 314 399 37 Note1 3556 2013 183 Note1 76334 16667 1459 

13 
1

1 xe−+  [ ]0,1  28 20 5 4 Note1 226 23 20 6989 5087 178 158 

14 

2

21
2

x

e
π

−

 
0, 2⎡ ⎤
⎣ ⎦  81 53 11 9 Note1 595 52 45 20696 13312 412 357 

15 sin( )xe  [0,2] Note1 449 125 54 Note1 5099 627 265 Note1 101065 5103 2121 

Note 1. Data not available for these NFGs. 

Table 6 Function Suite Including the Number of Segments for LN, LU, QU, and QN 
NFGs.  (After [20][4]) 
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The minimum segment width for a linear NFG is min (2) *
4

( )
lin

f x
εσ =  where *x  is 

the value at which (2) ( )f x  is maximum [5].  For a quadratic NFG, 3min (3) *

34
( )

quad

f x
εσ = .  

Thus for NFGs with uniform segmentation, the number of segments can be determined 

by dividing the domain of the NFG by the smallest segment width.  Therefore 

min
min

b as
σ
−

= , where [a,b] is the domain of the NFG.  For NFGs with non-uniform 

segmentation, it is more complicated to determine the number of segments.  The number 

of segments for a linear NFG with non-uniform segmentation is 

( ) (2) *
min

1 ( )
4

bLN

a
s s f x dxε

ε
= ∫ .  This is derived in [4].  We also consider the number 

of segments for a quadratic NFG with non-uniform segmentation to be given by the 

analogous equation ( )
(3) *3

min 3

( )1
4

b

QN a
f x dx

s s ε
ε

= ∫  (after [4]).  This has not yet been 

proven, but is shown to be accurate by correlating it with experimental segmentation 

methods. 

The author’s m-file segments.m uses MATLAB’s symbolic toolbox to calculate 

the derivatives above.  It then substitutes values for the interval [a,b] and the number of 

bits, n to calculate the maximum segment width maxσ .  Since MATLAB’s symbolic 

toolbox cannot compute the exact integrals for some of the more complicated functions 

(especially those using the absolute value), a numerical integration using a trapezoidal 

approximation [24] is implemented.  The numerical integral approximation was 

compared to the symbolic integrations (of those able to be integrated), yielding the exact 

same results.  The number of segments calculated with these equations matches most of 

the data in 0, confirming that it accurately calculates the number of required segments for 

a QN.  Table 7 shows the results of the calculations.  The values that do not exactly 

match those in 0 are noted below Table 7.  Although there are  
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small differences, they are all relatively accurate.  Also, since 2 minlogk s= ⎡ ⎤⎢ ⎥ , 

where k∈ , the actual number of segments being implemented is rounded up to the 

nearest power of two.   

Numerical integration allows us to integrate any function as long as it is 

continuous and bounded over the given interval.  Since it is used to calculate the integral 

of a 2nd or 3rd order derivative, we must ensure that the original function being 

implemented on the NFG is twice or thrice differentiable, for linear or quadratic NFGs, 

respectively.  This makes sense, since if f(x) is a linear function, then it is implemented 

exactly with a linear NFG.  Its 2nd derivative is 0; the integral of which is also 0.  This 

yields a segment width of ∞ , and 0 segments.  The function segment.m allows any 

function input in the form of a string (for example, ‘exp(x)’).  The function must be 

recognized by the functions in MATLAB and must be a single-variable function of x.  

The domain [a,b] for the NFG is also input to yield the number of require segments, mins . 

The function segments.m estimates the number of segments mins  for LU, LN, 

QU, and QN NFGs in a single function call.  From this, each model determines the 

number of address lines associated with its required coefficients table, 2 minlogk s= ⎡ ⎤⎢ ⎥ .  

These are needed to determine the size of the memory and the size of the SIE for the 

NFG that realizes the specific function over a specific interval [a,b].  The HUP and delay 

of the most compact memory unit is returned by calling HUandDelay(k,’Mem’,w), where 

w is the width of the word stored at each memory location.  Each model with non-

uniform segmentation also requires an n:k SIE. 
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# of Segments 

172ε −=  

# of Segments 
242ε −=  

# of Segments 

 332ε −=  
c 

Function 

f(x) Interval 
LU LN QU QN LU LN QU QN LU LN QU QN 

1 2x
 [ ]0,1  89 75 8 7 10043 849 39 35 227141 191961 311 2771 

2 1/x [ ]1,2  128 75 16 10 14493 849 81 50 327681 191961 646 400 

3 x  [ ]1,2  463 35 7 5 5123 388 321 24 115863 87691 2562 189 

4 1/ x  [ ]1, 2
 79 50 11 8 8873 565 55 36 20067 127711 4381 2871 

5 2log ( )x  [ ]1,2  109 76 13 9 12303 853 64 44 27831 192911 506 351 

6 ln(x) [ ]1,2
 91 63 12 8 10243 710 56 39 23171 160611 448 311 

7 sin( )xπ  
10,
2

⎡ ⎤
⎢ ⎥⎣ ⎦

 
143 109 14 12 16093 1227 70 58 36397 277621 5581 461 

8 cos( )xπ  
10,
2

⎡ ⎤
⎢ ⎥⎣ ⎦

 
143 109 14 12 16093 1227 70 58 36397 277621 5581 4601 

9 tan( )xπ  
10,
4

⎡ ⎤
⎢ ⎥⎣ ⎦

 
143 73 18 12 16093 822 88 58 36397 185801 7031 4581 

10 ln x−  
1 1,

512 4
⎡ ⎤
⎢ ⎥⎣ ⎦

 
49332 2091 7931 33 558063 23581 39951 163 12627442 533401 319572 13021 

11 
2tan ( ) 1xπ +  

10,
4

⎡ ⎤
⎢ ⎥⎣ ⎦

 
285 1531 30 16 32173 1721 151 79 72793 389261 12021 6291 

12 
( ) 2

2

1 log (1 )
log

x x
x x
− −

−

 
1 1,1

256 256
⎡ ⎤−⎢ ⎥⎣ ⎦

 
1730 3151 3981 37 195643 35571 20061 1821 4426763 804801 160472 14551 

13 
1

1 xe−+  [ ]0,1  28 20 5 4 3093 226 23 20 6985 51011 178 158 

14 

2

21
2

x

e
π

−

 
0, 2⎡ ⎤
⎣ ⎦  81 53 11 9 9153 595 52 45 206971 134531 412 3561 

15 sin( )xe  [0,2] 12213 4511 125 531 138133 5101 6261 265 3125533 1154021 50061 21161 

1. Slightly different from 0, but there is no difference in implemented memory sizes. 

2. Different from 0, resulting in an additional address line to the implemented memory. 

3. New results.  

Table 7 Number of Segments Based on Proven [5] and Assumed Equations. 

2. Estimating Multiplier Size  

The goal of this thesis is to estimate general NFG complexity and delay without 

having to perform a lengthy synthesis.  The multipliers analyzed in HUandDelay are n-

bit by n-bit multipliers whose product is 2n-bits in length.  Some NFG designs may 
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require n-bit by m-bit multipliers, where m n≠ .  To save all data bits, the product must 

contain n+m bits.  In these cases 
2

n m+⎡ ⎤
⎢ ⎥⎢ ⎥

-bit multipliers are used because their 

complexities are slightly more than multipliers optimized for specific n and m value.  

This estimate provides a worst case estimate for a multiplier.  Multiplier complexity can 

also be reduced by neglecting some of the output bits.  For example, some NFG designs 

may simply require an n-bit multiplier with an n-bit product.  Again, a full n-bit 

multiplier is substituted, representing a worst case multiplier size.   

3. Estimating Adder Size 

The adders analyzed in this thesis have two n-bit inputs, and produce an n-bit 

sum.  However, quadratic NFGS often require multiple-input adders.  Since 

HUandDelay does not provide information on multiple-input adders, the models in this 

thesis use adders in series.  Also, when two inputs are different sizes, the adder uses the 

larger of the two sizes.  Figure 42 shows an example of a 3-input adder with (m+1)-bit 

and (n+1)-bit inputs where m n≥ .   

a[
m

:0
]

b[
n:

0]

c[
n:

0]

3-input Adder

y[m:0]

a[
m

:0
] b[

n:
0]

c[
n:

0]

n-bit Adder

m-bit Adder

y[m:0]

=

a[
m

:0
]

b[
n:

0]

c[
n:
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3-input Adder

y[m:0]

a[
m

:0
]

b[
n:

0]

c[
n:
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3-input Adder

y[m:0]

a[
m

:0
] b[

n:
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c[
n:
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n-bit Adder

m-bit Adder

y[m:0]

a[
m

:0
] b[

n:
0]

c[
n:

0]

n-bit Adder

m-bit Adder

y[m:0]

=

 
Figure 42 Using Two 2-Input Adders to Realize a 3-input Adder. 

 

4. Estimating Other Components Not Analyzed by HUandDelay 

NFGs may require additional arithmetic components that are not analyzed by 

HUandDelay.m.  For functions with few inputs (n= 1 to 7 bits) LUTs can be used to 

realize a general function.  This may be applicable to NFGs that incorporate special 

number handling, or signed number manipulation.  It might also be efficient to use a SOP 

implementation.  The models in this thesis do not require special hardware. 
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C. MODELS FOR COMMON NFG ARCHITECTURES  

The models described in this section are summarized in Table 8.  They have been 

developed from architectures in [8][11][12].  Appendix A.1 shows how to use the models 

to obtain desired data and plot HU-Delay Graphs.   

1. Basic Linear NFGs  

Basic linear NFGs approximate ( )f x  with s equations in the form 

1 0( )i i iy x c x c= +  , where i∈  and 1 i s≤ ≤ .  The constants 1ic  and 0ic  are stored in 

memory or in LUTs.  The sizes of the components in the basic NFG architectures are  the 

minimum required sizes such that no bits are truncated or rounded.  For example, a 

multiplier with 2 n-bit inputs produces a product that has 2n-bits.  The architectures are 

shown in Figure 43.  The HU-Delay graphs in Figure 44 shown examples of basic linear 

NFGs realizing ( )f x x=  on [1,2]. 
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Figure 43 Basic Linear NFG Architectures.  (After [12]) 
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Figure 44 HU-Delay Graphs for LUB and LNB NFGs realizing ( )f x x= on the 

interval [1,2] with n=16. 

a. Uniform Segmentation 

The architecture for a basic linear NFG with uniform segmentation (LUB) 

is shown in Figure 43a.  It requires a 2k w×  memory, an n-bit multiplier, and a 2n-bit 

adder.  This architecture requires two coefficients to be stored in memory for each 

segment.  Thus, 2w n= .  The number of segments is determined by the segments.m, 

and the number of address lines required for the coefficients table is 2logk s= ⎡ ⎤⎢ ⎥ .  The 

multiplier requires a coefficient 1ic  from the memory.  Thus, computing 1ic  can only 

occur after a memory read has been completed.  Likewise, the adder must wait until the 

multiplier has completed its computation.  Thus, the adder depends on the multiplier.  

This dependency is shown in the dependency matrix shown in Figure 45. 

b. Non-uniform Segmentation 

The basic linear NFG with non-uniform segmentation is referred to as  the 

LNB.  The only difference between architecture with non-uniform versus uniform 

segmentation is that the non-uniform architecture also requires an n:k SIE.  The memory 

must wait for the SIE to complete its address computation before the memory can begin 

to look up the coefficients.  The dependency is also shown in Figure 45.  In general, non-

uniform architectures require fewer segments.  Thus, k is smaller than that of a similar 

architecture with uniform segmentation.  
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Figure 45 Dependency Matrices for Basic Linear NFGs. 

 

To implement a specific function with a basic linear NFG, the user must 

call the function model_Linear_Uniform_Basic or the function 

model_Linear_NonUniform_Basic with the size of the number system (n) and the 

number of segments ( mins ).  The author’s MATLAB m-file segments.m returns the 

number of segments required based on the proofs in [4] and a system error 12 nε − −= .  

2. Compact Linear NFGs 

Compact linear NFG architectures are shown in Figure 46 for both uniform and 

non-uniform segmentation.  HU-Delay graphs are shown in Figure 47 for ( )f x x=  on 

[1,2].  They compute the function ( ) ( )1i i i iy c x s f s v= − + + .  These types of NFGs can be 

used to reduce the size of the arithmetic components.  This often reduces the delay and 

sometimes the hardware utilization for the NFG.  They do not always reduce the overall 

amount of hardware required.  However, compare the architecture of the NFG in Figure 

46a with the basic linear NFG in Figure 43a.  The multiplier in the compact NFG is a k-

bit by (n-k)-bit multiplier, resulting in an n-bit product.  This thesis approximates this 

type of multiplier with a 
2
n⎡ ⎤
⎢ ⎥⎢ ⎥

-bit by 
2
n⎡ ⎤
⎢ ⎥⎢ ⎥

-bit multiplier, which is obviously smaller than 

the n-bit by n-bit multiplier used in the basic linear NFG above.  Also the memory would 
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only have to store an (n+k)-bit word for each segment instead of a 2n.  For the 

architecture in Figure 46b, additional hardware is required when compared to basic linear 

NFG in Figure 43b: an n-bit adder and an additional coefficient in memory.  Therefore 

there is a trade-off to be considered.  The adder causes a relatively small delay and takes 

up very little hardware.  However, if the number of segments is large, then adding an 

additional n-bit word for each segment can become extremely costly in terms of hardware 

utilization. 

In addition, the architectures below must be analyzed carefully for each particular 

function before determining which bits may be truncated without loss of precision.  Thus, 

q cannot be determined as a generality even though some specific architectures have been 

analyzed in depth [13].  To show general comparisons, the compact models in this thesis 

use 
2
nq = . 
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Figure 46 Compact Linear NFG Architectures.  (After [11]) 
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Figure 47 HU-Delay Graphs for LUC and LNC Realizing ( )f x x= on the Interval 

[1,2] with n=16. 
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Models for the LUC and LNC return HUP and delay by calling 

model_Linear_Uniform_Compact and model_Linear_NonUniform_Compact 

respectively.  The summary of the components and dependency matrices for compact 

linear NFGs using uniform and non-uniform segmentation methods (LUC and LNC) are 

shown in Table 8.   

3. Basic Quadratic NFGs  

Basic quadratic NFGs approximate ( )f x  with s equations in the form 
2

2 1 0i i iy c x c x c= + +  , where i∈  and 1 i s≤ ≤ .  The constants 2ic , 1ic , and 0ic  are stored 

in memory or in LUTs.  Like the basic linear NFGs, the sizes of the components in the 

basic quadratic architectures are  the minimum required sizes such that no bits are 

truncated or rounded.  

Basic quadratic architectures are shown in Figure 48 for NFGs using uniform and 

non-uniform segmentation.  Each requires three multipliers, two adders, and a 

coefficients table that contains three n-bit words.  The NFG with non-uniform 

segmentation also requires an n:k SIE.  An n-bit multiplier is used to produce 2x , which is 

a 2n-bit product.  To prevent truncation of any bits, a total of two n-bit multiplier and a 

single 1.5n-bit multiplier are used.  In addition, the first adder requires a 2n-bit input 

( 1ic x ) and an n-bit input ( 0ic ). Thus a 2n adder is used.  The 2n-bit sum ( 1 0i ic x c+ ) is 

added to the 3n-bit product 2
2ic x  in a 3n-bit adder. 
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Figure 48 Basic Quadratic NFG Architectures.  (After [8]) 

 

Models for the QUB and QNB return HUP and delay by calling 

model_Quad_Uniform_Basic or model_Quad_NonUniform_Basic.  A summary of 

the components and dependency matrices for QUB and QNB are shown in Table 8.  The 

HU-Delay graphs for QUB and QNB NFGs realizing ( )f x x=  on [1,2] are shown in 

Figure 49.   
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Figure 49 HU-Delay Graphs for QUB and QNB NFGs Realizing ( )f x x= on the 

Interval [1,2] with n=16. 
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4. Compact Quadratic NFGs 

The models for compact quadratic NFGs (model_Quad_Uniform_Compact 

and model_Quad_NonUniform_Compact in Appendix A.2) use the basic components 

that are necessary to compute ( ) ( ) ( )2
2 1i i i i i iy c x s c x s f s v= − + − + + , for uniform and 

non-uniform segmentations, respectively.  Like compact linear NFGs, compact quadratic 

NFGs use scaling methods [7] to reduce the size of the multipliers.  It is much more 

complex to determine the sizes of the components because they also depend on the 

required accuracy of the NFG.  Larger multipliers can provide more precise results 

because fewer bits are truncated.  The bit widths illustrated in Figure 50 are only an 

example.  The sizes cannot be generalized because they depend on the system accuracies 

and the effects of truncating bits with respect to a particular function.  Thus, they are not 

analyzed in the thesis, although the model can be easily modified to apply to a particular 

architecture with known component sizes.  In depth analyses have been done in [13] for 

exactly rounded quadratic NFGs.  The models implemented in this thesis set 1 2 2
nq q= =  

for general comparisons. 
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Figure 50 Compact Quadratic NFGs.  (After [8]) 
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A summary of the components and dependency matrices for QUB and QNB are 

shown in Table 8.  The HU-Delay graphs for these two architectures are shown in Figure 

51. 
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Figure 51 HU-Delay Graphs for QUC and QNC NFGs Realizing ( )f x x= on the 

Interval [1,2] with n=16. 
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Table 8 NFG Model Components and Dependencies. 
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D. CHAPTER SUMMARY 

This chapter shows how components are organized to form various models that 

represent particular NFG architectures.  It shows the assumptions made for choosing the 

size of each component within each model.  This chapter uses the complexity and delay 

estimations from the Chapter IV to estimate the complexity and delay for each NFG 

model.  Future models can be constructed in similar manner with components sized 

specifically for particular NFGs.  The models constructed in this chapter are compared in 

the following chapter to determine the best segmentation and approximation methods for 

particular functions.  The next chapter analyzes complexity and delay trends for eight 

NFG architectures and 15 functions over a wide range of NFG sizes.    
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V. COMPARING COMMON NFG ARCHITECTURES 

This chapter compares the basic and compact NFGs models to determine best 

configuration for each model for each size.  The first function in Table 7 ( ( ) 2xf x = ) is 

used as an example in this section but Appendix D contains the same plots for all of the 

functions in the function suite in 0.  Figure 52 shows HUP and delay versus n for the four 

basic NFG architectures realizing the function ( ) 2xf x =  on the interval [0,1]. 
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Figure 52 Basic Architecture Comparison for NFGs Realizing ( ) 2xf x = . 

 

A. COMPARING UNIFORM VERSUS NON-UNIFORM SEGMENTATION  

The benefits of using non-uniform segmentation can be seen in Table 7 by the 

reduction in the number of required segments.  This results in a smaller memory size than 

the same NFG using uniform segmentation.  However, the main reason the hardware of 

uniform segments is less than for non-uniform segments is the SIE.  It can be seen in 

Figure 53 that even for small NFGs, the SIE can consume more resources and take longer 

than all of the other NFG components combined.  As n gets larger, the portion of the 

HUP and delay that is due to the SIE grows.   
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Figure 53 HU-Delay Graphs for ( ) 2xf x =  for n=12 and n=16 bits. 

 

1. Comparing Hardware 

Figure 52 clearly shows that for ( ) 2xf x = , LUB LNBHUP HUP≤  and 

QUB QNBHUP HUP≤  for all n.  Also LUB LNBt t<  and QUB QNBt t<  for all n.  The savings in 

memory by using non-uniform segmentation is generally counteracted by the size and 

delay of the SIE that is required. Thus, in almost all cases it is better to use uniform 

segmentation.  13 of the 15 functions in 0 yield this result (Appendix D).  The functions 

that do not behave the same are function 10 ( )( ) lnf x x= −  and function 12 

( )( )2 2( ) 1 log (1 ) logf x x x x x= − − − .  Figure 54 shows that for function 10, non-uniform 

segmentation using an SIE requires less hardware than uniform segmentation for both 

linear and quadratic NFGs.  It also shows that for function 12, non-uniform segmentation 

requires less hardware only in quadratic NFGs.   
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Figure 54 Cases Where Non-uniform Segmentation is Requires Less Hardware than 

Uniform Segmentation. 

 

The main factor is the number of segments, which is mostly affected by the 

function properties.  Part of Table 7 is shown in Table 9.  For function 1 ( )( ) 2xf x = , 

84%LN LUs s≈ ×  and 89%QN QUs s≈ × .  Compare these memory savings to those for 

function 10, where 4.2%LN LUs s≈ ×  and 4.1%QN QUs s≈ × .  Here, non-uniform 

segmentation drastically reduces the required number of segment, s, so much that the 

combined hardware for the SIE and memory for a non-uniform NFG is less than that of 

the memory required for a uniform NFG. This explains why for both linear and quadratic 

NFGs, non-uniform segmentation requires less hardware (Figure 54a).  For function 12, 

18.2%LN LUs s≈ × and 9%QN QUs s≈ × .  Notice that the savings in memory is less for 

linear NFGs than it is for quadratic NFGs.  The graph in Figure 54b shows this as well.  

In fact, non-uniform segmentation only benefits quadratic functions because there is a 

bigger reduction in the number of required segments.   
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Table 9 Functions with a Large Number of Segments.   
 

Figure 55 shows how much of the NFG hardware is consumed by the SIE alone 

for NFGs with non-uniform segmentation for ( ) 2xf x = .  Note that SIEs generally 

contribute to at least 20% of the total NFG delay for a small n, and over 90% of the delay 

for larger n.  For a 16-bit LNB NFG, over 50% of the NFG hardware complexity is in the 

SIE.  The majority of a 28+-bit QNB NFG is also made up of the SIE alone.  Graphs for 

the other functions in Table 7 display similar characteristics for NFGs with non-uniform 

segmentation.  These are shown in Appendix D.   
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Figure 55 Percent Hardware Utilization and Delay due to SIE for ( ) 2xf x = . 

 

We now seek a criterion to determine when it is better to use uniform 

segmentation and when it is better to use non-uniform segmentation.  Specifically, we 

seek to establish the crossover point between these two based on hardware utilization.  In 

order to understand where the crossover occurs, we must examine the NFG components 
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closely.  The components for an n-bit LUB NFG are exactly the same as a LNB except 

for the memory size and the LNB requires an n:k SIE.  Here we will analyze the 

differences between the two architectures. 

For a given function ( )f x , let 2 minlog2
non unifsnon unifs

−⎡ ⎤− ⎢ ⎥= and 2 minlog2
unifsunifs

⎡ ⎤
⎢ ⎥= be the 

number of segments required for non-uniform and uniform segmentation, respectively.  

They depend on the particular function and interval as well as the required precision.  The 

values for min
non unifs − and min

unifs  are known for the various precisions of the 15 functions in 

Table 7. They can also be computed by using the author’s function segments.  Define 

the Segment Reduction Ratio (SRR) to be min

min

non unif

unif

sSRR
s

−

= .  The SRR represents the 

number of segments required for an NFG with non-uniform segmentation compared to 

uniform.  The number memory bits required for the LUB NFG is 2 uk
unifM w= × , where 

2 minlog unif
uk s⎡ ⎤= ⎢ ⎥  and the word size stored at each memory location is 2w n=  for a LUB 

(or 3w n=  for a QUB).  Let non unifM −  be the memory bits required to realize the SIE and 

the coefficients table for the non-uniform NFG.  Thus, 

22 2
2

n nk kn
non unif n

n kM k w+
−

−⎡ ⎤= ⋅ + ×⎢ ⎥⎢ ⎥
, where 2 minlog non unif

nk s −⎡ ⎤= ⎢ ⎥ .  This assumes that the 

coefficients table contains a power of 2 memory locations.  A non-uniform NFG requires 

more hardware than a uniform NFG, when non unif unifM M− ≥ .  Now define critSSR to be the 

value of SRR when non unif unifM M− = , or  

22 2 2
2

n n uk k kn
n

n k k w w+−⎡ ⎤ ⋅ + × = ×⎢ ⎥⎢ ⎥
. 

 

Let critSRR SRR=  and substitute min
min

non unif
unif

crit

ss
SRR

−

=  into 2 minlog unif
uk s⎡ ⎤= ⎢ ⎥ , therefore 

 

min
2 2 min 2

1log log log
non unif

non unif
u

crit crit

sk s
SRR SRR

−
−⎡ ⎤ ⎡ ⎤

= = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

. 
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Since we assume that 2 minlog2
non unifsnon unifs

−⎡ ⎤− ⎢ ⎥= , ( non unifs − is an integer power of 2), then  
 

2 2 2 2
1 1log log log lognon unif non unif

u
crit crit

k s s
SRR SRR

− −⎡ ⎤ ⎡ ⎤
= + = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

. 

 
Therefore, 
 

2 2 2
1 1log log log

22 2 2 2 2
2

non unif

crit critn n n
s

SRR SRRk k kn
n

n k k w w w
− ⎡ ⎤ ⎡ ⎤

+⎢ ⎥ ⎢ ⎥
+ ⎢ ⎥ ⎢ ⎥−⎡ ⎤ ⋅ + × = × = ×⎢ ⎥⎢ ⎥

 

 
Dividing both sides of the equation by 2 nk  yields, 
 

2
1log 14 2

2
critSRRn

n
crit

n k k w w w
SRR

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤−⎡ ⎤ ⋅ + = × = ×⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
 

 
 

Knowing that 1 1

crit critSRR SRR
⎡ ⎤

≥⎢ ⎥
⎢ ⎥

, 

 
14

2
n

n
crit

n k k w w
SRR

−⎡ ⎤ ⋅ + ≥ ×⎢ ⎥⎢ ⎥
 

 
Solving for critSRR  yields  
 

4
2

crit
n

n

wSRR
n k k w

≥
−⎡ ⎤ ⋅ +⎢ ⎥⎢ ⎥

 

 
This equation is plotted in Figure 56 for basic linear and basic quadratic NFGs.  Now we 
seek to find the minimum value of critSRR .  First consider the case where n is even.  Since 

,nk n∈  and nk  is even, nn k− is even.  Thus, we can remove the ceiling function.   
 

( ) ( )
1

2 2 2 2 1
crit n even

nn n
n

wSRR kn k k w n k
w

=
≥ =

− + − +
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Therefore, 
 

2
1

2 2 1
crit n even

n n

SRR
k kn
w w

=
≥

− +
 

 
For basic linear NFGs, 2w n= .  For basic quadratic NFGs, 3w n= .  Thus,  
 

Basic Linear
2

1

1
crit n even

n
n

SRR
kk
n

=
≥

− +
 and Basic Quadratic

2 2
1 3 2

2 2 31
3 3 2

crit n even
n n n

n

SRR
k k kk

n n
=

≥ =
− + − +

 

 
For cases when n is odd, nn k− is odd.  Thus,  
 

1 11 1
2 2 2 2

n n nn k n k n k− − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
 

 
Therefore, 
 

( )1 2 2 24 1
2

crit n odd
n n n

n

w wSRR
n k n k k wk w

=
≥ =

− − − + ⋅ +⎛ ⎞+ ⋅ +⎜ ⎟
⎝ ⎠

 

 
This reduces to : 
 

2
1

2 2 2 1
crit n odd

n n n

SRR
k k kn
w w w

=
≥

− − +
 

 
For linear and quadratic cases, 2w n=  and 3w n= .  Thus, 
 

Basic Linear
2
1

1
crit n odd

n n
n

SRR
k kk
n n

=
≥

− − +
  

and  
Basic Quadratic

2 2
1 3 2

2 2 2 31
3 3 3 2

crit n odd
n n n n n

n

SRR
k k k k kk

n n n n
=

≥ =
− − + − − +

 

 

Since 0nk
n
> ,  
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Basic Linear Basic Linear
crit critn odd n even

SRR SRR
= =

> , and Basic Quadratic Basic Quadratic
crit critn odd n even

SRR SRR
= =

>  

 
 

Thus, the minimum critical SRR, ,mincritSRR  can be found by finding the minimum of 

crit n even
SRR

=
, or the maximum of 1

crit n even
SRR

=

.  Differentiating the latter is much simpler 

and provides the same information.  Thus,  
 

2

Basic Linear

1 1 0n
n

n crit n

kk
k SRR k n

⎛ ⎞∂ ∂
= − + =⎜ ⎟∂ ∂ ⎝ ⎠

 

 
Solving for nk  yields  
 

21 0
2

n
n

k nk
n

− = ⇒ =  

 

This means that the maximum of 1

crit n even
SRR

=

 occurs when 
2n
nk = , therefore the 

minimum of crit n even
SRR

=
 occurs when 

2n
nk = .  Applying the same process to the 

quadratic case yields the same results.  Substituting 
2n
nk =  to find ,mincritSRR  yields 

 
Basic Linear

,min 2
1 1 4

41 11 42 2

critSRR n nn n
n

≥ = =
+⎛ ⎞ +− +⎜ ⎟

⎝ ⎠

 

and 
Basic Quadratic

,min 2
3 2 3 2 6

3 61 3
4 22 2 2

critSRR n nn n
n

≥ = =
+⎛ ⎞ +− +⎜ ⎟

⎝ ⎠

 

 

,mincritSRR  is the minimum SRR below which non-uniform segmentation requires 

less hardware than uniform segmentation, regardless of nk  or uk .  Thus, ,mincritSRR is also 

independent of the number of segments, non unifs − and unifs .  It is shown that ,mincritSRR is 
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only a function of n when 2 minlog2
non unifsnon unifs

−⎡ ⎤− ⎢ ⎥= and 2 minlog2
unifsunifs

⎡ ⎤
⎢ ⎥= .  Recall the definition, 

min

min

non unif

unif

sSSR
s

−

= .  Also recall that for linear NFGs,  

min
max

(2) *
4

( )

unif b a b as

f x
σ ε
− −

= =  and ( ) (2) *
min

1 ( )
4

bnon unif

a
s s f x dxε

ε
− = ∫ . 

Therefore, 

( )

(2) *
(2) *

Linear
(2) * (2) *

1 ( ) ( )4 4
( ) ( )

b
b

a
a

f x dx f x dx
SRR

b a f x b a f x

εε =
− −

∫ ∫   

for small ε .  For the analyses in this thesis, ε  is sufficiently small.  For all of the 

functions in Table 7, the maximum difference in SRR is 0.022.  The largest ε  in Table 7 

is 172− .  Since practical NFGs generally require 172ε ≤ , calculating the SRR for a 

function using the asymptotic equations above relatively accurate. 

Clearly, the SRR of a particular NFG depends only on the function being realized 

and its domain [a,b], and not on ε .  Therefore, SRR does not depend on n.  This is also 

confirmed by comparing the SRRs in Table 10 , which are calculated from the numbers of 

segments in Table 7.  The significance of this conclusion is that if the number of 

segments for a particular function is known for both uniform and non-uniform 

segmentations, then critSRR can be found as a function of n and min
non unifs − .  Since the SRR  

of a particular function does not depend on n, the relation between critSRR and SRR  

determines at what values of n non-uniform segmentation is beneficial.   

Once n, ( )f x , and [a,b] are known, it can be determined easily if a non-uniform 

segmentation is always beneficial independent of the number of segments required.  If 

( )

(2) *
Basic Linear Basic Linear

,min(2) *

( ) 4
4( )

b

a
crit

f x dx
SRR SSR

nb a f x
= < =

+−

∫ , then a linear NFG using non-

uniform segmentation requires less hardware than the same NFG using uniform 
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segmentation.  These calculations are based on using SIEs comprised of LUT cascades 

and using Chebyshev polynomials to compute the coefficients for each segment [5]. 

The results are shown in Figure 56.  SRRs for equations 10 and 12 have also been 

plotted in Figure 56.  There are three points for each function corresponding to the 

calculated values for each precision in Table 10.  Notice that for equation 10 

( ( ) lnf x x= − ), 10 0.04EQSRR ≈ for both linear and quadratic NFGs.  These are below 

any of the critSRR curves shown for both the linear and quadratic NFGs for 64n ≤ .  

Correspondingly, the HUP plots in Figure 54 shows that LNB LUBHUP HUP<  and 

QNB QUBHUP HUP< .  For equation 12, 12 0.18EQSRR ≈  for linear NFGs, lying above the 

critSRR curve for n > 24.  This means that uniform segmentation consumes less total 

hardware for a 24-bit NFG realizing  ( ) 2 2( ) 1 log (1 ) logf x x x x x= − − −  than non-

uniform segmentation.  This is also shown in Figure 54a 
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Figure 56 Critical SRR for Various n. 
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SRR ( )172ε −= SRR ( )242ε −= SRR ( )332ε −=  

# f(x) Interval 
Linear Quadratic Linear Quadratic Linear Quadratic 

1 2x
 [ ]0,1  0.842 .875 .845 0.897 0.845 0.891 

2 1/x [ ]1,2  0.6 0.625 0.586 0.617 0.586 0.619 

3 x  [ ]1,2  0.760 0.714 .758 0.75 0.757 0.738 

4 1/ x  [ ]1, 2
 0.63 0.727 0.637 0.655 0.636 0.655 

5 2log ( )x  [ ]1,2  0.697 0.692 0.693 0.688 0.693 0.694 

6 ln(x) [ ]1,2
 0.692 0.667 0.693 0.696 0.693 0.694 

7 sin( )xπ  
10,
2

⎡ ⎤
⎢ ⎥⎣ ⎦

 
0.762 0.857 0.693 0.829 0.763 0.824 

8 cos( )xπ  
10,
2

⎡ ⎤
⎢ ⎥⎣ ⎦

 
0.762 0.857 0.763 0.829 0.763 0.824 

9 tan( )xπ  
10,
4

⎡ ⎤
⎢ ⎥⎣ ⎦

 
.510 0.667 0.511 0.659 0.510 0.651 

10 ln x−  
1 1,

512 4
⎡ ⎤
⎢ ⎥⎣ ⎦

 
0.042 0.042 0.042 0.041 0.042 0.041 

11 
2tan ( ) 1xπ +  

10,
4

⎡ ⎤
⎢ ⎥⎣ ⎦

 
.537 0.533 0.535 0.523 0.535 0.523 

12 
( ) 2

2

1 log (1 )
log

x x
x x
− −

−

 1 1,1
256 256
⎡ ⎤−⎢ ⎥⎣ ⎦

 
.182 0.093 0.182 0.091 .182 0.091 

13 
1

1 xe−+  [ ]0,1  0.714 0.800 0.731 0.870 0.730 0.888 

14 

2

21
2

x

e
π

−

 
0, 2⎡ ⎤
⎣ ⎦  0.654 0.818 0.650 0.865 0.650 0.864 

15 sin( )xe  [0,2] 0.369 0.424 0.369 0.417 0.369 0.423 

Table 10 Table of SRR for the Suite of Functions.   

 

For the majority of the functions in Table 10, 0.5SRR > .  This is well above all 

of the curves in Figure 56.  This means that non-uniform segmentation results in higher 

hardware utilization for 13 of the 15 functions.   

In summary, it is only beneficial to implement non-uniform vice uniform 

segmentation when it can be shown that there is a large savings in the number of required 

segments (small SRR).  The minimal amount of savings critSRR  is related to the number 
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of segments and the size of the NFG being implemented, n.  If the coefficient tables 

contain a power of 2 memory locations (which is often the case in hardware), this 

minimum amount of savings can be quantified.  The actual amount of savings ( )f xSRR  is 

shown to depend only on ( )f x and the domain of the NFG realizing it [a,b].  Data plots 

in Appendix D.1 show which particular NFG realizations require less hardware for 

particular functions.   

The derivations of ,mincritSRR  have been shown above for the basic architectures 

described in Chapter IV, but they can also be applied to other architectures.  We can 

generalize the process by allowing w to remain in the equations for critSRR .  

Since 2 2
1 1

2 2 2 1 2 2 1
crit critn odd n even

n n n n n

SRR SRR
k k k k kn n
w w w w w

= =
≥ > ≥

− − + − +
,

( ),min mincrit crit n even
SRR SRR

=
= . 

Now we find the minimum of general equation:  

2 2
1 2

2 2 1 2
crit n even

n n n
n

w nSRR
k k kn k w n
w w n

=
≥ =

− + − +
 

 

Like the linear and quadratic cases, the minimum occurs when
2n
nk = .  Thus,  

 

,min 2
2 2 2

222 4

crit
n

n

w n w n w nSRR nk n w nw nk w n
n

≥ = =
++− +

 

 

This determination stems from a comparison between unifM  and non unifM − , and 

assumes that the remaining arithmetic components in the two NFGs are exactly the same.  

For example, consider the compact NFG architectures described in Chapter IV.  The 

compact linear NFG assumes 1.5w n= ⎡ ⎤⎢ ⎥  and the compact quadratic NFG 

assumes 3w n= .  To compare other architectures, simply replace w with the number of 

bits stored at each location in memory.   
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2. Comparing Delays 

The delay graphs for basic and compact NFGs in Appendix D.1 show that for all 

of the functions in the function suite the delay is larger for NFGs with non-uniform 

segmentation.  Figure 55b shows that at least 20% of the delay of a non-uniform NFG is 

due to the SIE alone.  The percent delay that is attributed to the SIE is shown for 15 

functions in Appendix D.4.   

Again, the main difference between uniform and non-uniform NFGs is the SIE in 

the latter.  The remaining hardware is the same, and contributes the same delay to the 

total delay.  This section compares the delay for a coefficients table for an NFG with 

uniform segmentation, unif unif
ROMt t= , to the sum of the delays of for the coefficient table and 

SIE for an NFG with non-uniform segmentation, non unif non unif
ROM SIEt t t− −= + .  For 142s ≤ , or 

14k ≤ , a single BRAM can be used as the coefficients table.  Thus, ROM BRAMt t= .  

Therefore, if both 14nk ≤ and 14uk ≤ , then unif non unif
ROM ROM BRAMt t t−= =  and non unif unift t− > for all 

n because of the SIE.  When 14nk > and 14uk > , ( 14):1u

unif
BRAM k MUXt t t −= +  and 

( 14):1 2:n n n

non unif
BRAM k MUX k k SIEt t t t−

− += + + . If 21k > , then all of the BRAM on the Xilinx 

Virtex-II would be consumed.  Thus the maximum required MUX size is a 7:1 MUX.  

Figure 57 shows that a 7:1 MUX has a delay of ,max 7:1 4.6MUX MUXt t ns= ≈ .  To find the 

minimum SIEt  when 14nk > , we look at the delay for a 16:15 SIE because n must be 

greater than nk .  Therefore, 14
,min 21.6nk

SIEt ns> ≥ .  Since when 14nk > and 14uk > , 

14
,min ,max

nk
SIE MUXt t> > , it follows that non unif unift t− >  for all n.   
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Figure 57 MUX and SIE Delays.   

 

Since u nk k≥  for all non-uniform NFGs, there is only one remaining case to 

consider: when 14nk ≤ and 14uk > .  Here ( 14):1u

unif
BRAM k MUXt t t −= +  and  

: n

non unif
BRAM n k SIEt t t− = + .  unif non unift t −>  iff ( 14):1 :u nk MUX n k SIEt t− > .  Again, the maximum delay 

for the MUX is 7:1 4.6MUXt ns≈ .  Figure 58 shows when : 4.6
nn k SIEt ns≤ , the x-axis is nk and 

the y-axis is nn k− . 
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Figure 58 Delay for SIE <4.6ns. 

 

The maximum size SIE where the delay is less than that of the maximum MUX is 

an 8:6 SIE.  This means n can be at most 8-bits.  Therefore, when 8n > , an NFG with 
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uniform segmentation is always faster than one with non-uniform segmentation.  In 

addition, in order for a non-uniform NFG to be faster than a uniform NFG, it would 

require that 6nk ≤ and 21uk = .  This means that 62 64non unifs − ≤ = segments and 

212 2,097,152non unifs − ≈ = segments.  Correspondingly, 152 0.00003SRR −≤ ≈ .  In 

summary, there are not likely any practical cases where unif non unift t −> .  The plots in 

Appendix D.1 confirm this. 

B. COMPARING LINEAR VERSUS QUADRATIC 

When considering whether to use quadratic or linear NFGs, there are tradeoffs to 

consider.  The tradeoff comes between arithmetic component hardware size and 

coefficient table size.  The size of the coefficients table depends on the function and 

interval.  For a given function, the number of segments is less for a quadratic NFG than 

for a linear NFG.  But the basic quadratic NFG requires three coefficients for each 

segment while the basic linear requires only two.  Thus, the coefficient table is 150% that 

of the linear NFG.  In addition, quadratic NFGs require additional multipliers and adders 

which grow in complexity as n grows.  The tradeoff occurs when n gets big such that the 

coefficients table becomes a larger percentage of the overall NFG complexity than the 

rest of the arithmetic components.  An example of when the crossover occurs is shown in 

Figure 52 for both HUP and delay.  For the function ( ) 2xf x =  on the interval [0,1], 

when 40n < , LUB QUBt t< , and when 27n < , LUB QUBHUP HUP< .  This is only one 

example, but the graphs in Appendix D.1 show where the crossovers occur for the 

remaining 14 functions in the function suite. 

The HU-Delay graphs in Figure 59 and Figure 60 compare 16-bit NFGs realizing 

( ) 2xf x =  on [0,1].  The total HUP and delay are less for the LUB than for the QUB.  

Clearly, the linear NFG is better.  Now compare the non-uniform NFGs in Figure 60.  

Since the SIE makes the linear NFG much bigger and have a larger delay, the delay of the 

LNB is longer than that of the QNB.  However, the QNB requires more hardware than 

the LNB.   
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Figure 59 HU-Delay Graph Comparing LUB and QUB. 
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Figure 60 HU-Delay Graph Comparing LNB and QNB.   

 

In general, for large n, it is better to implement quadratic NFGs for a given type of 

segmentation.  When the reduction in coefficient table size from quadratic to linear NFGs 

accounts for the reduction in arithmetic component complexity from linear to quadratic 

NFGs, then quadratic NFGs become less complex than their linear counterparts.  Since 

memory and SIE sizes depend on the particular function, generalizing a criterion for 

deciding whether a linear or quadratic NFG requires more hardware, or has a longer 

delay, is extremely difficult.  For this reason, we apply the data collected from 

estimations using the models in Chapter IV.  The crossover points for delay and hardware 

utilization can be found in the graphs in Appendix D.1.  The crossover points for delay 

and HUP often occur at separate values of n.  This means that if it is desired to minimize 

hardware usage instead of the delay, then the HUP crossover must be considered.   
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C. CHAPTER SUMMARY 

This chapter shows how the estimation tools developed in Chapter IV are used to 

analyze characteristics of common NFG architectures.  It analyzes eight NFG models for 

15 functions, providing graphical data that shows which architecture consumes the least 

hardware or has the smallest delay for each function.  This data shows that quadratic 

NFGs require less hardware and have shorter delays as the size of the NFG gets larger.  It 

also establishes a criterion for when non-uniform segmentation is beneficial for a 

particular function, based on the size of the NFG.  The findings in this chapter show that 

NFGs with non-uniform segmentation generally require more hardware and almost 

always have longer delays than NFGs with uniform segmentation.  Chapter VI 

summarizes the findings in this chapter and the development of the models in this thesis. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

This thesis develops a software model for estimating complexity and delay for 

NFGs.  It also uses the software to analyze characteristics of common NFGs. 

A. SOFTWARE MODEL 

This thesis shows how complexities and delays for NFGs can be estimated 

without having to build them.  The software framework developed in this thesis provides 

a fast method for comparing NFGs over a wide range of functions, architectures, and 

sizes. 

1. Comparing Common NFG Component Complexity and Delay 

The software can be used to find hardware utilization and delay for several 

components.  The implementations of common NFG components in specific FPGA 

hardware are analyzed in depth to estimate their complexity and delay based on the 

number of inputs, n (up to n=128).  Specific simulation data from behavioral models and 

schematic circuits is used in determining the complexity and delay of each component.  

Missing data is interpolated with linear approximations.  The software provides a quick 

and simple way to determine hardware utilization and delay for a particular component.  

This allows various components to be compared to determine which best suits a 

particular application.   

2. Modeling and Comparing NFGs 

This software provides a simple means to combine several components in 

series/parallel configurations to represent an NFG or other arithmetic logic device.  The 

software determines the worst case propagation delay through the NFG as well as the 

total hardware used by the NFG.  It can be used to compare various NFG architectures 

for various sizes.  The HUP-Delay graphs can be used to visually compare NFGs, as well 

as visually compare the relative sizes and delays of the components inside them.   
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B. RESULTS OF NFG ANALYSES 

The results provide an easy way to choose the best architecture based on hardware 

complexity and/or delay.  This thesis also shows that the complexity and delay of an NFG 

greatly depend on the complexity and delay of its coefficient table and associated SIE 

(for non-uniform NFGS). 

1. Benefits of Non-uniform Segmentation 

For 13 of the 15 functions analyzed in this thesis, non-uniform segmentation 

offers no benefits.  However, when non-uniform segmentation drastically reduces the 

number of segments in an NFG, it can reduce the overall hardware utilization.  The delay 

is almost always longer for NFGs with non-uniform segmentation. 

a. A Criterion when Non-Uniform Segmentation Requires Less 
Hardware  

The majority of the functions in Table 10 show that non-uniform 

segmentation still requires at least 50% of the segments requires by uniform 

segmentation.  Two of the fifteen functions show reductions by lower than 10%.  This 

thesis shows a criterion that can be used to determine which segmentation method 

requires less hadware for basic NFGs.  It compares the reduction in the number of 

segments by non-uniform segmentation (SRR) to the NFG size, n.  The minimum amount 

of reduction required, ,mincritSRR , depends on the number of segments (which depends on 

( )nε ) and the properties and domain of the function being realized.  This thesis also 

shows that the SRR of a given function depends only on the properties of that function 

and the domain of the NFG implanting the function.  When the number of segments 

(corresponding to the number of memory locations) is restricted to a power of two, 

,mincritSRR becomes a function of n only.  For a basic linear NFG, if 

( )

(2) *

(2) *

( ) 4
4( )

b

a
f x dx

nb a f x
<

+−

∫  (or Basic Linear Basic Linear
,mincritSRR SSR< ), then non-uniform 

segmentation requires less hardware.  This is true for basic quadratic NFGs when 
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( )

(3) *

(3) *

( ) 6
6( )

b

a
f x dx

nb a f x
<

+−

∫ . From these equations, a critical value of n can be determined, 

critn , below which it is always more hardware efficient to use non-uniform segmentation.  

The derivations of these equations assume that LUT cascades are used in the SIE for the 

non-uniform NFGs and Chebyshev polynomials are used to determine the coefficients for 

the approximation equations.  They also assume the basic architectures described in 

Chapter IV are used. 

b. Delays for Non-Uniform Segmentation  

This thesis shows that non-uniform segmentation always has a longer 

delay than uniform segmentation, except in rare trivial NFGs (where 8n ≤ ).  In fact, 

when NFG architectures for 15 functions were compared in terms of delay, non-uniform 

NFGs proved the best only in a few cases when 2n ≤ .  If 2n ≤ , two LUTs can be used 

instead of an NFG.  Therefore, for all practical NFGs, propagation delay is longer when 

non-uniform segmentation is implemented.  Appendices D.2.2 and D.3.2 show the best 

architectures based on delay.   

2. Linear vs. Quadratic NFGs  

When considering linear versus quadratic NFGs for the 15 functions in the suite, 

LUB NFGs consume less hardware than QUB NFGs for n less than ≈25 to 29 bits.  They 

also have smaller delays than QUB NFGs for n ≈37 to 39 bits.  Appendix D.2 shows 

which of the four basic architectures is best in terms of HUP for all 15 of the functions in 

Table 7.  It also shows which is better in terms of delay.  The crossover points for 

compact architectures vary from the basic architectures.  Appendix D.3 shows the best of 

the compact architectures.   
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C. RECOMMENDATIONS FOR FUTURE WORK 

The method of estimating component complexity and delay in this thesis allows 

meaningful comparisons to be made.  The software developed in this thesis is meant to be 

used in future applications with minor alterations. 

1. Using Other FPGAs 

It may be beneficial to estimate hardware utilization and delay for the models 

developed in this thesis on other FPGAs.  The author’s MATLAB file 

LoadXilinxDeviceData contains specifications for the Xilinx Virtex-II XC2V6000 

FPGA with a speed grade of -4.  The timing and hardware parameters can be specified 

for other Virtex-II FPGAs as well.  HUandDelay assumes that arithmetic components 

are constructed as described in Chapter III.  The method of component construction is 

common to all Virtex-II FPGAs.  Thus, by changing the parameters in 

LoadXilinxDeviceData, complexity and delay estimations can be made easily for the 

entire family of FPGAs.  To estimate FPGAs other than Virtex-II, minor alterations to 

HUandDelay are required to allow for variations in component construction.  For 

example, the Virtex-II resources include 18-bit signed multipliers.  Other FPGAs may not 

contain multipliers at all.  Therefore, the multiplier estimation section has to be re-written 

to provide estimations based on how the specific FPGA implements multipliers.   

2. Creating and Comparing Other Models 

Each of the eight models in this thesis has been constructed in a standard manner.  

They can be used as templates to build other models.   

a. Analyzing Other Methods for Reducing NFG Hardware and 
Delay  

Modern research concerning NFGs often focuses on reducing hardware 

and/or delay.  Research in [5] shows a reduction in the number of segments by 

implementing non-uniform segmentation, resulting in dramatic reduction in the amount 

of memory required for the NFG.  Other research shows that a reduction in arithmetic 
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component size can be achieved by other means [4].  For example, using linear NFGs 

that have a slope that is a power of two reduces complex mulipliers into simpler barrel 

shifters.  Models can easily be built to compare the tradeoffs between the several 

methods.   

b. Comparing NFGs with Specifically Sized Components 

Architectures in [13] are shown to reduce arithmetic component 

complexity and actually specify component bit-widths.  Models for these architectures 

can be constructed and compared to the basic models in this thesis to illustrate relative 

hardware and delay savings.  The size of each component in the NFG can be specified in 

the model file (i.e. model_*.m), allowing the models to be extremely flexible.   

3. Categorizing Functions that Benefit from Non-Uniform Segmentation 

This thesis shows that non-uniform segmentation is only beneficial when ( )f xSRR  

is small.  The values of ( )f xSRR  depend only on the function and the domain of the NFG 

realizing it.  For linear NFGs, it is related to (2) ( )f x , and for quadratic NFGs, it is related 

to (3) ( )f x .  Specific functions can be found where ( )f xSRR is small.  Thus, they are likely 

candidates to employ non-uniform segmentation.   

4. Analyzing Domain/Range Reduction Methods for Reducing NFG 
Hardware and Delay 

Aside from looking at the properties of particular functions, examining their 

domains may assist in reducing the number of segments, which reduces the complexity 

and delay of the NFG.  Domain reduction methods allow the NFG’s domain to be shifted 

where it requires fewer segements.  However, they often include additional arithmetic 

components.  Models can be constructed to conduct tradeoff analyses for these domain 

reduction methods so that optimal domains can be determined. 
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APPENDIX A. MATLAB SOURCE CODE 

A.1 M-FILE USAGE 

In order to use the MATLAB source code, all of the m-files in this appendix are 

required to be in the same folder, along with the text files that are imported (Appendix 

B.2).  When entering commands, or calling functions, the user must be in the current 

directory where the m-files are stored.   

1. Comparing Individual Components 

To compare individual components, type the following into MATLAB’s 

command window: 

 

This will produce the SUP, MUP, BUP and delay for the given component.  The 

variable ‘component’ is a string that matches one of the following strings: ‘Adder’, 

‘Mult’,’Mult18x18’,’MUX’,’RAM’,’ROM’,’BRAM’,’BS’,’SIE’,’Mem’,’CLB’, or 

’SOP.’  The values of n and w are the input word width and output word width 

respectively.  In some cases, the complexity and delay do not require both inputs.  A 

summary of all of the components that can be analyzed with HUandDelay is shown in 

Table 4.   

This function can be used to produce the hardware utilization and delays of 

various sized components for comparisons.  To calculate the hardware utilization in a 

single term, the HUP of a given component can be calculated with the following 

command once SUP, MUP, and BUP are calculated: 

 

HUP_comp = HUP(SUP, MUP, BUP) 

[SUP BUP MUP t] = HUandDelay(n,component,w) 
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2. Comparing NFG models 

The HUP and delay can be found for several NFG architectures that have been 

implemented in models.  The following commands can be used to compare various 

models: 

 

This will return the HUP and delay for an NFG with system size n, that requires s 

segments.  The variable ‘ModelNum’ can be any integer.  Table 11 summarizes the 

models that are implemented base on the value of ‘ModelNum.’ 

 

ModelNum NFG Model 
1 LUB 
2 LNB 
3 QUB 
4 QNB 
5 LUC 
6 LNC 
7 QUC 
8 QNC 

Table 11 Model Number Index. 

3. Comparing Functions 

The HUP and delay can be found for any function over any interval.  The number 

of segments must be known, or the function must meet the requirements for segment 

estimation discussed in Chapter IV.  The functions and corresponding domains in Table 7 

may be easily returned by calling the function funcSel with its input variable equal to the 

index number of the function.  The following code shows how to get the HUP and delay 

for a given function on a given interval with a given system size n.   

 

[HUP_comp t_comp] = pickModel(ModelNum,n,s) 
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This will produce the HUP and delay for LUB NFG the realizes ( ) 2xf x = on 

[a,b].  The variable ‘funcNum’ chooses the function from the function list, and returns the 

functions as a string expression and the domain of the NFG [a,b].  If ‘funcNum’ is not an 

integer between 1 and 15, then funcSel prompts the user to input a function and domain.  

Any function of x may be entered, if it is recognized as a single-variable function in 

MATLAB.  The author’s function segments returns the number of segments required in 

a vector corresponding to the segmentation techniques, [LU LN QU QN].  To implement 

a particular model for an NFG, choose the corresponding number of segments 

(numSegs(1), numSegs(2), numSegs(3),or  numSegs(4) ).   

4. Producing HU-Delay Graphs  

To produce a HU-Delay Graph to represent an NFG or other arrangement of 

components, the user must know the HUP and delay for the components.  The user must 

also construct a dependency matrix, based on the arrangement of the components, and a 

list component names.  Once these are determined, they are input into HUPBoxes with 

the following command: 

 

The variable ‘components’ is a matrix with two columns and a row for every 

component in the NFG.  The first column holds the HUP value for the component 

corresponding to the row number.  The second column holds the delay value for that 

particular component.  The variable ‘dependency’ is the dependency matrix discussed in 

Chapter IV.  The variable ‘compNames’ is an array of strings, where each row holds the 

[totHUP totDelay] = HUPBoxes(components,dependency,compNames);

modelNum=1   % corresponds to LUB NFG 
n=32  % corresponds to the system size 
funcNum = 1  % corresponds to f(x)=2^x on [0,1] 
 
[f a b] = funcSel(1) 
numSegs=segments(f,a,b,n) 
[HUP_NFG t_NFG] = pickModel(modelNum,n,numSegs(1)) 
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string name for the particular component.  Each string (row) must be the same length in 

the matrix ‘compNames.’  The function HUandDelay will return the total delay along the 

worst case path through the NFG and the overall HUP.   

A.2 MATLAB FILES 

1. M-file List 

The following MATLAB source code was written by the author.  Table 12 is the 

list of m-files and their dependencies.   

M-file/function Depends on  
BlackLineStyle none 
boxesOrigin BlackLineStyle 
fillLin none 
funcSel none 
HUP none 
HUPBoxes none 
HUandDelay LoadXilinxDeviceData 

HUP 
fillLin 
HUandDelay (Recursion) 
IMPORTS data from:    MultDelayWithNet.txt 
                                       MultSlices.txt 
                                       MuxDelayWithNet.txt 

LoadXilinxDeviceData fillLin 
IMPORTS data from:    NetDelay.txt 

model_Linear_NonUniform_Basic  
model_Linear_NonUniform_Compact 
model_Linear_Uniform_Basic 
model_Linear_Uniform_Compact 
model_Quad_NonUniform_Basic 
model_Quad_NonUniform_Compact 
model_Quad_Uniform_Basic 
model_Quad_Uniform_Compact 

HUandDelay 
HUP 
HUPBoxes 
totalHUPandDelay 

myInt none 
pickModel model_Linear_NonUniform_Basic 

model_Linear_NonUniform_Compact 
model_Linear_Uniform_Basic 
model_Linear_Uniform_Compact 
model_Quad_NonUniform_Basic 
model_Quad_NonUniform_Compact 
model_Quad_Uniform_Basic 
model_Quad_Uniform_Compact 

segments myInt 
symbolic\syms.m 
symbolic\syms.m 

totalHUPandDelay none 
Table 12 M-file List with Dependencies. 
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2. M-file Source Codes 

FILE: BlackLineStyle.m 

function [styleCode] = BlackLineStyle(index); 
  
%  This function returns a string variable to be used as a line style 
%   Written by Tim Knudstrup, August 30, 2007 
  
index=round(abs(index));    % ensures positive integer 
numStyles = 9; 
index = mod(index,numStyles); 
  
switch index 
    case 1 
        styleCode='k-'; 
    case 2 
        styleCode='k--'; 
    case 3 
        styleCode='k-.'; 
    case 4 
        styleCode='k:'; 
    case 5 
        styleCode='k.:'; 
    case 6 
        styleCode='k.-'; 
    case 7 
        styleCode='k+-.'; 
    case 8   
        styleCode='k*:'; 
    case 9  
        styleCode='k*-'; 
    otherwise 
        styleCode='k-'; 
end 
 

 

FILE: boxesOrigin.m 

function [a] = boxesOrigin(s,t) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% boxesOrigin.m                                                           % 
%                                                                         % 
% This function/program plots HU-Delay Graph for various components       % 
% and each component is centered at the origin.                           % 
%                                                                         % 
%   function [a] = boxesOrigin(s,t)                                       % 
%                                                                         % 
%   Input:        s:   Vector containing Size values                      % 
%                 t:   vector containing Time Delay Values                % 
%                                                                         % 
%  Output:       a:    Returns 1 if no error                              % 



 110

%                                                                         % 
%  Comments:          s and t must be the same length                     % 
%                                                                         % 
% Created by:  Tim Knudstrup                                              % 
%       Date:  20 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%s=[2 3 4 5 6 8]; 
%t=[10 2 3 4 5 12]; 
  
inc=0.01; 
  
tAxisLength=max(t)+1; 
sAxisLength=max(s)+1; 
  
tAxis=[0:inc:tAxisLength]; 
NumComps=max(size(t)); 
t_len=max(size(tAxis)); 
sizeMatrix=zeros(NumComps,t_len); 
  
for comp=1:NumComps 
    tcum(comp)=tAxisLength-sum(t(comp+1:end));     
end 
  
close all; 
figure(1) 
comp =1; 
for comp=1:NumComps 
    for k=1:(t_len) 
        tVal=k*inc;  
        if tVal <= t(comp) 
            sizeMatrix(comp,k)=s(comp);   
        end                      
    end 
end 
  
for p=1:NumComps 
    p 
    colr = ([rand(1) rand(1) rand(1)]).^1.5; 
    plot(tAxis,sizeMatrix(p,:),BlackLineStyle(p)) 
    hold on 
end 
hold off 
axis([0 tAxisLength 0 max(s)*1.2]); 
legend 
  
ylabel('HUP (%)'); 
xlabel('Delay (ns)'); 
print -depsc -tiff BoxesOrigin.eps 
  
a=1;  
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FILE: fillLin.m 

function [filledX filledY] = fillLin(dataX,dataY) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% fillLin.m                                                               % 
%                                                                         % 
% This function creates filledX and filledY vectors containing data at    % 
%   every integer ranging from 1 to the maximum integer value of of dataX % 
%   The values in filledY match those in the original dataY, and for data % 
%   points not included in dataX, filledY values are estimated using      % 
%   linear approximation between the data points that do exist.           % 
%                                                                         % 
%   function [filledX filledY] = fillLin(dataX,dataY)                     % 
%                                                                         % 
%   Input:        dataX:   X values for data points                       % 
%                 dataY:   Y values for data points                       % 
%                                                                         % 
%  Output:      filledX:   X values from 1 to max dataX                   % 
%               filledY:   Y values corresponding to filledX              % 
%                                                                         % 
%  Comments:   1.   dataX must be positive integers only                  % 
%              2.   dataX must be the same length as dataY                % 
%                                                                         % 
% Created by:  Tim Knudstrup                                              % 
%       Date:  20 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
% Trial DATA 
%dataX = [1 2 5 9 20]; 
%dataY = [3 4 6 8 10]; 
  
dataX = round(dataX); % makes sure all x values are integers 
  
unit=1; 
filledX =  [1:unit:max(dataX)]; 
len=length(filledX); 
lenData=length(dataX); 
dummy=123456789; 
filledY = dummy*(0*filledX+1); 
  
filledY(1)=dataY(1); 
  
  
for k=1:lenData 
    filledY(dataX(k))=dataY(k); 
end 
  
k=1; 
beginIndex=1; 
endIndex=1; 
while (k < len)&&(beginIndex<len)&&(endIndex<len)      
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    while (filledY(beginIndex) ~= dummy)&&(beginIndex<len) 
        beginIndex = beginIndex+1; 
    end 
    endIndex=beginIndex; 
    while (filledY(endIndex) == dummy)  &&(endIndex<len) 
        endIndex = endIndex + 1; 
    end 
    if filledY(beginIndex)==dummy 
        if beginIndex > 1 
            m=(filledY(endIndex)-filledY(beginIndex-1))/(filledX(endIndex)-
filledX(beginIndex-1)); 
            b=filledY(beginIndex-1)-filledX(beginIndex-1)*m; 
        end 
         
            
        for kk=beginIndex:endIndex 
            filledY(kk)=filledX(kk)*m+b; 
        end 
    end 
    k=k+1; 
    beginIndex=endIndex+1; 
end 
  
filledX=filledX'; 
filledY=filledY(1:len)'; 
%plot(dataX,dataY,filledX,filledY) 
  
 
 

 

FILE: funcSel.m 

function [ f a b ] = funcSel(funcNum); 
  
%   This function returns the string representing the function 
%   and its domain for one of the functions in the function suite. 
%   The input variable 'funcNum' is the index of the function in the 
%   function suite. 
  
%   If funcNum is not an integer between 1 and 15, then the user is 
%   prompted for an equation and domain.  
  
switch funcNum 
    case 1 
        f='2^x'; 
        a = 0; 
        b=1; 
         
    case 2 
        f='1/x'; 
        a = 1; 
        b = 2; 
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    case 3 
         f='sqrt(x)'; 
        a = 1; 
        b = 2; 
         
    case 4 
        f='1/sqrt(x)'; 
        a = 1; 
        b = 2; 
         
    case 5 
        f='log2(x)'; 
        a = 1; 
        b = 2; 
         
    case 6 
        f='log(x)'; 
        a = 1; 
        b = 2; 
         
    case 7 
        f='sin(pi*x)'; 
        a = 0; 
        b = 0.5; 
         
    case 8 
         f='cos(pi*x)'; 
        a = 0; 
        b = 0.5;       
         
    case 9 
        f='tan(pi*x)'; 
        a = 0; 
        b = 0.25; 
         
    case 10 
        f='sqrt(-log(x))'; 
        a = 1/512; 
        b = 1/4; 
         
    case 11 
        f='(tan(pi*x))^2+1'; 
        a = 0; 
        b = 0.25; 
         
    case 12 
        f='0-(x*log2(x)+(1-x)*log2(1-x))'; 
        a = 1/256; 
        b = 1-1/256; 
         
    case 13 
        f='1/(1+exp(-x))'; 
        a = 0; 
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        b = 1; 
         
    case 14 
        f='1/(sqrt(2*pi))*exp(-x^2/2)'; 
        a = 0; 
        b = sqrt(2); 
         
    case 15 
        f='sin(exp(x))'; 
        a = 0; 
        b = 2; 
         
         
    otherwise 
        f=input(' Enter function string (ie ''e^x''): ' ); 
        a = input(' Enter beginning of interval: '); 
        b = input(' Enter end of interval: '); 
         
end 
  
 

 

FILE: HUandDelay.m 

function [SUP MUP BUP delay] = HUandDelay(n,device,WordWidth) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HUandDelay.m                                                            %
%                                                                         %
% This function returns Hardware utilization parameters and propagation   %
% delay estimations for several arithmetic logic devices for a given word %
% size n.  This does not always return the best case circuit design,  
% but illustrates the effects of word-width on the size and delay of  
% basic arithmetic logic circuits.  
% 
%   function [SUP MUP BUP delay] = HUandDelay(n,device)                 
%                                                                      
%   Input:        n:        the wordsize of the arithmetic device     
%            device:        string value for the type of logic device.  It 
%                           may be one of the following devices: 
%                      1. 'Adder' for an adder 
%                      2. 'Mult' for multiplier built from CLBs 
%                      3. 'MULT18x18' for a multiplier using MULT18x18s 
%                      3. 'MUX' or 'mux' for a multiplexer  
%                      4. 'RAM', 'ROM','DistRAM' for memory devices 
%                      5. 'CLB' for general n-input logic function 
%                      6. 'BRAM' or 'BlockRAM' for Block RAM memory 
%                      7. 'BS' or 'BarrelShifter' for a BarrelShifter 
%                      8. 'SIE' for a segment index encoder (LUT Cascade) 
%                      9. 'MEM' or 'Mem' picks the best from ROM or BRAM 
%                     10. 'SOP' for a worst case SOP with n variables 
%           WordWidth:      the number of bits of the output from  
%                           (used for MEM BRAM and CLB only) 
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% 
%  Output:       SUP:   Slice Utilization Percentage 
%                MUP:   MULT18x18 Utilization Percentage 
%                BUP:   BRAM Utilization Percentage 
%                delay: propagation delay forthe logic device 
%                                                                         %
%  Comments:                               % 
%                                                                         %
% Created by:  Tim Knudstrup                                              %
%       Date:  13 October 2007                                          % 
%                                                                         %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  
% loads the Hardware Specifications for the Xilinx Virtex-II XC2V6000 
LoadXilinxDeviceData;  
WordWidth= ceil(WordWidth); 
%************ CALCULATING AREA USED ******************* 
  
switch device   %DistRAM assumes SinglePort (Dual Port is twice as much 
space) 
    case {'CLB','ROM','DistRAM','Rom','LUT'}  
            
        % ROMs are constructed from Xilinx Primitive RAMs, using read time 
        % delays from the Address input bits to the Data output bit. 
        % Maximimum distributed RAM primitive is 128x1, or 7 address bits. 
        % Thus, if n > 7, larger ROMs are constructed using 2^(n-7) 128x1 
        % ROMs, combined with 2^(n-7):1 MUX network.  For large n > 14, 
        % Block RAM should be used to avoiding using up all of the CLBs. 
         
        fanout=ceil(2^(n-4))*WordWidth;  % also accounts for the fanout 
inside each ROM unit 
        if fanout > 129 
            fanout =129; 
        elseif fanout < 1 
            fanout =1; 
        end 
         
        RomPrim=n; % m is index into a single nx1 ROM where n is at most 7 
        if RomPrim > 7  
            RomPrim=7;  
        end 
        if n > 0 
            ROMdelay=tNx1ROM(RomPrim); % delay of a single Nx1 ROM (where n 
<=7) 
        else 
            ROMdelay=0; 
        end 
         
        NumMuxLevels=n-7; 
        if NumMuxLevels < 0 
            NumMuxLevels = 0; 
        end 
        NumROMs=2^NumMuxLevels; 
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        LUTSperROM=ceil(2^(RomPrim-4));         
        SUPperROM=100*LUTSperROM/2/TotalSlices; 
         
        [SUP_MUX MUP_MUX BUP_MUX tMUX] = 
HUandDelay(NumROMs,'MUX',WordWidth); 
         
        if NumMuxLevels == 0 
            tMUX = 0; 
            SUP_MUX=0; 
        end 
         
        SUP=(NumROMs*SUPperROM+SUP_MUX)*WordWidth; 
        BUP=0; 
        MUP=0; 
        delay = tNET(fanout)+ROMdelay+tNET(1)+tMUX; 
         
        if n<=0 
            SUP=0; 
            delay=0; 
        end 
  
    case {'BlockRAM','BRAM'}  
              
        k=ceil(n);    % k is defined in thesis as the number of address 
lines 
        NumMemLocations = 2^k; 
        ReqMemBits = NumMemLocations*WordWidth;   
         
        NumBlocks=ceil(ReqMemBits/MemBitsPerBRAM);  
        fanout = NumBlocks; 
        if fanout>128 
            fanout = 128; 
        end 
        if fanout < 1 
            fanout =1; 
        end 
         
        MuxLevels=k-14;         
        if MuxLevels <= 0 
            MuxLevels=0; 
            SUP=0; 
            MuxDelay=0; 
        else 
            [SUP_MUX MUP_MUX BUP_MUX MuxDelay] = 
HUandDelay(2^MuxLevels,'MUX',WordWidth); 
            SUP=SUP_MUX*WordWidth; 
        end 
         
        MUP=0; 
        BUP=100*NumBlocks/NumBlockRAM; 
        delay = tNET(fanout) + tBCKO + MuxDelay; % clk-->data out plus 
Setup time 
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    case {'MEM', 'Mem'} 
%        Uses the type of memory that requires the least hardware (HUP) 
  
        [SUP_BRAM MUP_BRAM BUP_BRAM tBRAM] = 
HUandDelay(n,'BRAM',WordWidth); 
        HUP_BRAM=HUP(SUP_BRAM,MUP_BRAM,BUP_BRAM); 
        [SUP_LUT MUP_LUT BUP_LUT tLUT] = HUandDelay(n,'LUT',WordWidth); 
        HUP_LUT=HUP(SUP_LUT,MUP_LUT,BUP_LUT);        
         
        if (HUP_LUT  > HUP_BRAM)  
            BUP=BUP_BRAM; 
            MUP=0; 
            SUP=SUP_BRAM; 
            delay=tBRAM; 
        else 
            BUP=BUP_LUT; 
            MUP=0; 
            SUP=SUP_LUT; 
            delay=tLUT; 
        end 
         
         
    case 'ExtRAM' % NOT CONFIGURED AT THIS TIME 
        % use Address Decoder NumLUTs 
        DeviceCLBs= xxx;       
        delay = xxx; 
    case 'SOP' 
        % This assumes a worst case SOP realization 
        numTerms = 2^(n-1)*WordWidth; 
        termSize=n; 
        fanout=WordWidth*2^(n-1); 
        if fanout>128 
            fanout = 128; 
        end 
        if fanout < 1 
            fanot = 1; 
        end 
        numSlices = numTerms*ceil(termSize/4)/2; 
        SUP = 100*numSlices/TotalSlices; 
        BUP=0; 
        MUP=0; 
        delay = tNET(fanout)+tLUT4+tMUXCY_S_O+(ceil(termSize/4)-
1)*tMUXCY_I_O+(numTerms)*tORCY; 
         
    case 'Mult18x18'    
        % Imported Data removes I/O Buffer gate delay, but leaves in tNET 
        % Estimates for mulitpliers are from empirical data. 
        maxRadix=17; % r is the radix of the multiplier 
        nOVERr=ceil(n/maxRadix); 
        numPPbits=ceil(n/nOVERr);  % This finds the number of bits of the 
PPs 
        PPGoutputBit=numPPbits*2;  % This is index into multiplier delays 
for a  
                                   % given pin on the MULT18x18, which is 
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                                   % twice the number of bits in the 
                                   % multiplicands into the MULT18x18. 
         
        mult = importdata('MultDelayWithNet.txt'); 
        [MULTn MULTt] = fillLin(mult(:,1),mult(:,2));           
         
        fanout=nOVERr; 
        NumMults=nOVERr^2; 
         
        mult = importdata('MultSlices.txt'); 
        [MULTn MULTslice] = fillLin(mult(:,1),mult(:,2)); 
        NumSlices=MULTslice(n);         
         
        SUP=100*NumSlices/TotalSlices; 
        MUP=100*NumMults/Num18x18; 
        BUP=0; 
        delay= MULTt(n); 
    case 'Mult'  
        % Estimations based on architecture using CLBs 
        Radix=4; 
        nOVERr=ceil(n/Radix); 
        %SlicesPerPPG=4;  % This assumes PPGs 8 4-input LUTs are used for 
each PPG 
         
        fanout=nOVERr; 
        NumPPGs=nOVERr^2; 
        NumAdders = 2*(nOVERr-1)*nOVERr+1; 
        AdderDepth = 2*(nOVERr-1); 
         
        % Assumes each PPG is built from a Radix-bit function 
        [SUPperPPG MUP_PPG BUP_PPG PPGdelay] = 
HUandDelay(Radix,'CLB',WordWidth); 
        SUPperPPG = SUPperPPG * 2*Radix;  % Each PPG requires 2*Radix 
functions 
         
        % Each Adder is assumed to be a Radix-bit adder 
        [SUPperAdder MUP_Adder BUP_Adder AdderDelay] = 
HUandDelay(Radix,'Adder',WordWidth);  
                
        SUP=NumPPGs*SUPperPPG+SUPperAdder*NumAdders; 
        MUP=0; 
        BUP=0; 
        %Adders are assumed to occur in series (NOT the best design) 
        delay= PPGdelay+AdderDelay*AdderDepth;   
     
    case 'Adder' 
        % Imported Data is not utilized for adders since a linear eq. fits 
        % can be shown imperically from Xilinx ISE  data 
        NumSlices=ceil(n/2); 
        tRCA_overhead=2.528;   
         
        % after analyzing XILINX ISE data, linear equation works for n>4 
        % error in linear approximation is 0 for n > 4 
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        if n <= 2  
            delay = tILO+tNET(1); 
        elseif n <= 3 
            delay = tIFX+tNET(1); 
        elseif n <= 4 
            delay = 2*tIF5+tNET(1); 
        else 
            delay = tMUXCY_I_O*(n-2) + tRCA_overhead;  
        end 
         
        SUP= 100*NumSlices/TotalSlices; 
        MUP=0; 
        BUP=0; 
         
         
    case {'BS','BarrelShifter'} 
        % uses n n:1 Muxs as most basic Barrel Shifter 
        [SUP_MUX MUP_MUX BUP_MUX MuxDelay] = HUandDelay(n,'MUX',WordWidth); 
        fanout = n;   
        shiftLevels=ceil(log2(n)); 
        SUP=shiftLevels*SUP_MUX; 
        MUP=0; 
        BUP=0; 
        delay = MuxDelay+tNET(fanout)-tNET(1);  
        % removes tNET for fanout of 1 and inserts tNET for appropriate 
fanout  
         
    case {'MUX','mux','Mux'} 
        % This is a n:1 MUX         
        NumSlices=ceil(n/4);  % checks with ISE data 
                   
        mux = importdata('MuxDelayWithNet.txt'); 
        [MUXn MUXt] = fillLin(mux(:,1),mux(:,2));           
         
        % Imported Data removes I/O Buffer gate delay, but leaves in tNET 
        % Max n to index into MUXt is 128 
        if n <= 128 
            delay = MUXt(n);    % delay comes from imported ISE data 
        else  
            delay =  2*ceil(log2(n))-14+12.1997;  % estimate from equations 
        end 
        if n<=2 
            delay=tNET(1)+tILO; 
        end 
         
        SUP=100*NumSlices/TotalSlices; 
        MUP=0; 
        BUP=0; 
              
    case 'SIE' 
        % SIE is assumed to be for NON-UNIFORM Segmentation 
        % The SIE is constructed with a LUT cascade architecture. 
        % The timing a HW utilization is based on the architecural 
        % description described in the thesis with the number address lines



 120

        % input to the memory is the WordWidth. 
         
        k=WordWidth; 
        numRails= k;   
        [SUP_LUT MUP_LUT BUP_LUT LUTDelay] = 
HUandDelay(k+2,'LUT',WordWidth);  
        % EACH LUT is a (k+2)input LUT with k outputs --> k (k+2)input LUTs
        % are used in series.  The HUP using LUTs is compared to the HUP 
        % using BRAMs and the one using less hardware is chosen. 
        [SUP_BRAM MUP_BRAM BUP_BRAM BRAMDelay] = 
HUandDelay(k+2,'BRAM',WordWidth);  
        HUP_LUT=HUP(SUP_LUT,MUP_LUT,BUP_LUT); 
        HUP_BRAM=HUP(SUP_BRAM,MUP_BRAM,BUP_BRAM); 
         
        if HUP_LUT > HUP_BRAM 
            SUP=SUP_BRAM; 
            BUP=BUP_BRAM; 
            MUP=MUP_BRAM; 
        else 
            SUP=SUP_LUT; 
            BUP=BUP_LUT; 
            MUP=MUP_LUT; 
        end 
               
        SUP=SUP*ceil((n-k)/2); 
        BUP=BUP*ceil((n-k)/2); 
        MUP=MUP*ceil((n-k)/2);   
         
        delay=LUTDelay*ceil((n-k)/2); 
         
    otherwise 
        SUP = 'ERROR'; 
        BUP = 'ERROR'; 
        MUP = 'ERROR'; 
        delay = 'ERROR'; 
end 
  

 

FILE: HUP.m 

function [HUPout] = HUP(SUP,MUP,BUP) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% HUP.m                                                                   % 
%                                                                         % 
% This function calculates the Hardware utilization percentage            % 
%                                                                         % 
%    function [totHUP totalDelay] = HUP(SUP,MUP,BUP)                      % 
%                                                                         % 
%   Input:   SUP:       slice utilization percentage in %, max 100%       % 
%            MUP:       MULT18x18 Utiliazation Percentage, max 100%       % 
%            BUP:       BRAM Utilization Percentage, max 100%             % 
%                                                                         % 
%  Output:   HUPout:    Calculated value for HUP.                         % 
%                                                                         % 
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% Created by:  Tim Knudstrup                                              % 
%       Date:  12 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    
  
BS=0; 
if BS == 1  
     
x=[1:1:100]; 
SUP=[1:1:100]/100; 
MUP=[[1:2:100] [1:2:100]]/100; 
BUP=[[1:4:100] [1:4:100] [1:4:100] [1:4:100]]/100; 
  
HUPa = 1-((1-SUP).*(1-MUP).*(1-BUP)).^(1/3);%./sqrt((1-SUP).*(1-MUP).*(1-BUP)); 
HUPb=(SUP.*MUP.*BUP).^(1/3); 
close all; 
plot(x,SUP,x,MUP,x,BUP,x,HUPa,x,HUPb) 
legend('SUP','MUP','BUP','HUPa','HUPb') 
  
AXIS([0 100 0 1]) 
end 
  
if SUP > 100 
    SUP = 100; 
end 
if MUP > 100 
    MUP = 100; 
end 
if BUP > 100 
    BUP = 100; 
end 
  
HUPout=100*(1-((1-SUP/100)*abs(1-MUP/100)*abs(1-BUP/100))^(1/3)); 
 

 

FILE: HUPBoxes.m 

function [totHUP totalDelay] = HUPBoxes(components,dependence,compNames) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% HUPBoxes.m                                                              % 
%                                                                         % 
% This function/program displays the delay and percent hardware           % 
% utilization given up to 12 components and a dependence relationship.    % 
% It is used to show circuit components in series and in parallel         % 
% and the combined delay of multiple components which is dependent on     % 
% one components relationship to another.                                 % 
%                                                                         % 
% function [totHUP totalDelay] = depBoxes(components,dependence,compNames)% 
%                                                                         % 
%   Input: components:   nx2 array of components arranged                 % 
%                        n = row number = the component number            % 
%                        Max number of ROWs is 12                         % 
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%                        each row contains :                              % 
%                        [ HUP timedelay ]                                % 
%                                                                         % 
%          dependence:   an nxn array that defines the dependence         % 
%                        of the components.                               % 
%                        For each row, the array should contain a 1 if    %  
%                        the component number (row#) has to wait until    % 
%                        another component is completed (in series).      % 
%                                                                         % 
%          compNames:    an nx1 column of strings, naming each component  % 
%                        strings must be the same length, can add extra   % 
%                        spaces.                                          % 
%                                                                         % 
%  Output:   totHUP:    total percent of hardware used in this circuit    % 
%            totalDelay: total composite circuit delay                    % 
%  Comments:                                                              % 
%                                                                         % 
% Created by:  Tim Knudstrup                                              % 
%       Date:  12 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      
numComps=size(components); 
numComps=numComps(1); 
  
close all; 
  
% Color list (each Row contains a different color code (upto 12)) 
Clist = [ 0.5 0 0 
          0   0 0.5   
          0 0.5 0  
          0.5 0.5 0 
          0.5 0 0.5 
          0 0.5 0.5 
          0.75 0 0 
          0  0 0.75 
          0 0.75 0 
          0.75 0.75 0 
          0.75 0 0.75 
          0 0.75 0.75];        
  
compEnds=zeros(1,numComps); 
compStarts=compEnds; 
  
compTop=compEnds; 
compBot=compEnds; 
  
for comp=1:numComps 
    if (sum(dependence(comp,:))==0) 
        compStarts(comp)=0; 
    else 
        compDep=find(dependence(comp,:)); 
        compStarts(comp)=max(compEnds(compDep)); 
    end 
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    compEnds(comp)=compStarts(comp)+components(comp,2); 
end 
compStarts; 
compEnds; 
  
for comp = 1:numComps     
    if (comp==1)  
        compBot(comp)=0; 
    else 
        sameStart=find(compStarts(1:comp-1)==compStarts(comp)); 
        if isempty(sameStart) 
            compDep=find(dependence(comp,:)); 
            [y indx] = max(compEnds(compDep)); % finds index into  
            compBot(comp)=compBot(indx); 
        else 
            largestTop=max(sameStart); 
            compBot(comp)=compTop(largestTop); 
        end 
    end 
    compTop(comp)=compBot(comp)+components(comp,1); 
end 
compBot; 
compTop; 
    
% OUTPUT Data 
totalDelay=max(compEnds); 
totHUP=sum(components(:,1)); 
  
% Graphs 
for comp = 1:numComps     
    xVals=[compStarts(comp) compStarts(comp) compEnds(comp) compEnds(comp)]; 
    yVals=[compBot(comp) compTop(comp) compTop(comp) compBot(comp)]; 
     
    colorset=Clist(comp,:); 
    fill(xVals,yVals,colorset)         
    hold on 
end 
  
legend(compNames,'Location','EastOutside') 
ylabel(' Hardware Utilization Percentage') 
xlabel('Propagation delay (ns)') 
  
temp=cat(2,'Total HUP = ',num2str(totHUP,4),'%, Total Propagation Delay = 
',num2str(totalDelay,4),' ns.'); 
title(temp) 
 
 

 

FILE: LoadXilinxDeviceData.m 

%************ XILINX Virtex-II 6000 Limits ************* 
% Most data originates from Virtex-II Platform FPGA Datasheet (available at 
% www.xlininx.com) assuming a Virtex-II XC2V6000 device with a speed grade of  
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% -4 (worst case). 
% Data collected through simulation is noted. 
% All Delay data included here is the worst case input to output signal  
% delay for the particular device. 
  
xxx=123456789; % This value is not know at this time 
  
%******** Available Memory  ************** 
  
% ***** Distributed SelectRAM *** 
% I am really only concerned with ROM  
TotalDistRAM = 132000; 
TotalDistRAMbits = 1081344; 
TotalDistRAMbytes = TotalDistRAMbits/8; 
  
t_AS = 0.5;   
DistRAMDelay = xxx ; % in ns 
tSHCKO16 = 2.05; 
tSHCKO32 = 2.49; 
tSHCKOF5 = 2.23; 
  
% ***** Block SelectRAM ********* 
NumBlockRAM = 144; 
TotalBlockRAM = 324000; 
TotalBlockRAMbits = 2654208; 
TotalBlockRAMbytes = TotalBlockRAMbits/8; 
MemBitsPerBRAM = 16384; 
  
BlockRAMdelay = 2.65; % in ns 
tBCKO = 2.65; 
tBACK = 0.36; 
  
% ******* ROM ****************** 
% Uses CLB directly as a function of n inputs 
% Thus all data is imperically determined from Xilinx ISE Primitives and 
% does not include net delays or IO Buffer delays. 
% The delays are combinational from along the longest delay path from 
% Address bit A0 to the data output.  All times are in ns. 
% The primitives are actually RAM units, but only used as ROMs.  
% These values do not include NET delays, they must be accounted for 
% elsewhere 
tNx1ROM=[0.875 0.875 0.875 0.875 0.875 0.875 1.562 1.879]; 
t16x1ROM=0.875; 
t32x1ROM=0.875; 
t64x1ROM=1.562; 
t128x1ROM=1.879; 
%************************************** 
  
%******* Available Logic ************** 
TotalSlices=33792; 
TotalLUTs=67584; 
TotalFFs=67584; 
TotalShiftRegBits=TotalDistRAMbits; 
MaxSOPChain=192; 
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MaxCarryChain=176; 
  
%****** CLB *************************** 
TotalCLBs=TotalLUTs/8; 
CLBdelay4to1 = 0.44; % SPEED GRADE -4 in ns 
CLBdelay5to1 = 0.72; 
tILO=0.44; 
tIF5=0.72; 
tIFX=0.95; 
tINFXY=0.45; 
tINAFX=0.32; 
tINBFX=0.32; 
tSOPSOP=0.44; 
% MORE DATA AVAILABLE 
%*************************************** 
  
%****** Multipliers ******************** 
% Check to see if Enhanced or not !!! 
Num18x18=144; 
% These are the worst case in to out delays using the entire multiplier 
Delay18x18=10.36;  % in ns 
Delay18x18Enh=5.91; %  
  
% The DELAY can be reduced if the entire 18x18 Mult is not used 
% See Page 22 of Module 3 in Xilinx DataSheet 
% Index into the array is offset by 1 
tMULT = [3.12; 3.32;3.53;3.74;3.94;4.15;4.36;4.56; 
    4.77;4.98;5.19;5.39;5.6;5.81;6.01;6.22;6.43;6.63; 
    6.84;7.05;7.26;7.46;7.67;7.88;8.08;8.29;8.5;8.7; 
    8.91;9.12;9.33;9.53;9.74;9.95;10.15;10.36]; 
  
%*************************************** 
  
%****** Routing Delays ***************** 
  
tIBUF=0.825; 
tOBUF=4.361; 
  
  
%*************************************** 
  
%****** I/O Pads *********************** 
TotalIOpads=1104; 
IOpadDelay= 100; % in ns 
%*************************************** 
  
%*************************************** 
% EMPIRICAL DATA COLLECTED 
% This creates an array tNET from empirical data supported by Xilinx 
% Datasheets.   
  
% ***** NET DELAYS ******** 
data_in = importdata('NetDelay.txt'); 
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[fanout tNET] = fillLin(data_in(:,1),data_in(:,2)); 
  
% **** SPECIAL MUX DELAYS  ** 
tMUXCY_I_O = 0.053; % fast carry MUX prop delay from input I0 to output O.  
                  % This data is reported to be 0.05 ns in Datasheet. 
tMUXCY_S_O = 0.298; 
  
% **** LOGIC COMPONENT DELAYS    
tLUT4 = 0.439;                 
tORCY = 0.44; 
  
%*************************************** 
  
%****************************************************** 
  
plot_on=0; 
  
if plot_on == 1 
    stem(data_in(:,1),data_in(:,2),'bo-') 
    hold on 
    plot(fanout,tNET,'g.-') 
    xlabel('fanout') 
    ylabel('Net Delay') 
    legend('Collected Data Points','FillLine Data Points'); 
end 
 
 

 

FILE: model_Linear_NonUniform_Basic.m 

function [totHUP totDelay] = model_Linear_NonUniform_Basic(n,numSegs) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% model_Linear_NonUniform_Basic.m                                         % 
%                                                                         %      
% This function produces the HUP and delay for a model of a linear NFG    % 
%   using nonuniform segmentation.                                        % 
%                                                                         %   
% function [totHUP totDelay] = model_Linear_NonUniform_Basic(n,numSegs)   % 
%                                                                         %   
%   Input:            n:      number of bits in the system                % 
%                                                                         % 
%               numSegs:      number of segments in the memory            % 
%                                                                         % 
%  Output:       totHUP:    hardware utilization percentage               % 
%            totalDelay:    total composite circuit delay                 % 
%  Comments:                                                              % 
%                                                                         %       
% Created by:  Tim Knudstrup                                              % 
%       Date:  25 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  
k=ceil(log2(numSegs));  % number of address lines to the coefficients Memory 
WordWidth=2*n;          % 2 n-bit numbers are stored in the Coefficients Memory 
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[SUP_SIE MUP_SIE BUP_SIE tSIE] = HUandDelay(n,'SIE',k); 
[SUP_mult MUP_mult BUP_mult tMult] = HUandDelay(n,'Mult18x18',WordWidth); 
[SUP_mem MUP_mem BUP_mem tMem] = HUandDelay(k,'MEM',WordWidth); 
[SUP_add MUP_add BUP_add tAdd] = HUandDelay(2*n,'Adder',WordWidth); 
  
HUP_SIE= HUP(SUP_SIE, MUP_SIE, BUP_SIE); 
HUP_mult= HUP(SUP_mult,MUP_mult,BUP_mult); 
HUP_mem= HUP(SUP_mem, MUP_mem, BUP_mem); 
HUP_add= HUP(SUP_add, MUP_add, BUP_add); 
  
device1 = [HUP_SIE tSIE]; 
device2 = [HUP_mem tMem]; 
device3 = [HUP_mult tMult]; 
device4 = [HUP_add tAdd]; 
  
dependency= [0 0 0 0 
             1 0 0 0 
             0 1 0 0 
             0 0 1 0]; 
          
components = [device1;device2;device3;device4]; 
compNames = [ 'SIE        ' 
              'Memory     ' 
              'Multiplier ' 
              'Adder      ']; 
  
           
graphON=0; 
if graphON == 1; 
    [totHUP totDelay] = HUPBoxes(components,dependency,compNames); 
else 
    [totHUP totDelay] = totalHUPandDelay(components,dependency,compNames); 
end 
 

 

FILE: model_Linear_Uniform_Basic.m 

function [totHUP totDelay] = model_Linear_Uniform_Basic(n,numSegs) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% model_Linear_Uniform_Basic.m                                            % 
%                                                                         % 
% This function produces the HUP and delay for a model of a linear NFG    % 
%   using uniform segmentation.                                           % 
%                                                                         %  
% function [totHUP totDelay] = model_Linear_Uniform_Basic(n,numSegs)      % 
%                                                                         %   
%   Input:            n:      number of bits in the system                % 
%                                                                         % 
%               numSegs:      number of segments in the memory            % 
%                                                                         % 
%  Output:       totHUP:    hardware utilization percentage               % 
%            totalDelay:    total composite circuit delay                 % 
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%  Comments:                                                              % 
%                                                                         %       
% Created by:  Tim Knudstrup                                              % 
%       Date:  25 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  
  
k=ceil(log2(numSegs));  % number of address lines to the coefficients Memory 
WordWidth=2*n;          % 2 n-bit numbers are stored in the Coefficients Memory 
  
[SUP_mult MUP_mult BUP_mult tMult] = HUandDelay(n,'Mult18x18',WordWidth); 
[SUP_mem MUP_mem BUP_mem tMem] = HUandDelay(k,'MEM',WordWidth); 
[SUP_add MUP_add BUP_add tAdd] = HUandDelay(2*n,'Adder',WordWidth); 
  
HUP_mult= HUP(SUP_mult,MUP_mult,BUP_mult); 
HUP_mem= HUP(SUP_mem, MUP_mem, BUP_mem); 
HUP_add= HUP(SUP_add, MUP_add, BUP_add); 
  
device1 = [HUP_mem tMem]; 
device2 = [HUP_mult tMult]; 
device3 = [HUP_add tAdd]; 
  
dependency= [0 0 0  
             1 0 0 
             0 1 0]; 
components = [device1;device2;device3]; 
compNames = [ 'Memory     ' 
              'Multiplier ' 
              'Adder      ']; 
  
           
graphON = 0; 
if graphON == 1; 
    [totHUP totDelay] = HUPBoxes(components,dependency,compNames); 
else 
    [totHUP totDelay] = totalHUPandDelay(components,dependency,compNames); 
end 
              
  
 
 

 

FILE: model_Linear_NonUniform_Compact.m 

function [totHUP totDelay] = model_Linear_NonUniform_Compact(n,numSegs) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% model_Linear_NonUniform_Compact.m                                       % 
%                                                                         % 
% This function produces the HUP and delay for a model of a compact       %  
% linear NFG using nonuniform segmentation.                               % 
%                                                                         %       
% function [totHUP totDelay] = model_Linear_NonUniform_Compact(n,numSegs) % 
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%                                                                         %   
%   Input:            n:      number of bits in the system                % 
%                                                                         % 
%               numSegs:      number of segments in the memory            % 
%                                                                         % 
%  Output:       totHUP:    hardware utilization percentage               % 
%            totalDelay:    total composite circuit delay                 % 
%  Comments:                                                              % 
%                                                                         %       
% Created by:  Tim Knudstrup                                              % 
%       Date:  25 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  
  
k=ceil(log2(numSegs));  % number of address lines to the coefficients Memory 
q=n/2;                  % This is just an assummed value.   
WordWidth=3*n-q;        % bits per word in Coefficients Memory. 
  
  
[SUP_SIE MUP_SIE BUP_SIE tSIE] = HUandDelay(n,'SIE',k); 
[SUP_mult MUP_mult BUP_mult tMult] = 
HUandDelay(ceil(n/2),'Mult18x18',WordWidth); 
[SUP_mem MUP_mem BUP_mem tMem] = HUandDelay(k,'MEM',WordWidth); 
[SUP_add MUP_add BUP_add tAdd] = HUandDelay(n,'Adder',WordWidth); 
  
HUP_SIE= HUP(SUP_SIE, MUP_SIE, BUP_SIE); 
HUP_mult= HUP(SUP_mult,MUP_mult,BUP_mult); 
HUP_mem= HUP(SUP_mem, MUP_mem, BUP_mem); 
HUP_add= HUP(SUP_add, MUP_add, BUP_add); 
  
device1 = [HUP_SIE tSIE]; 
device2 = [HUP_mem tMem]; 
device3 = [HUP_add tAdd]; 
device4 = [HUP_mult tMult]; 
device5 = [HUP_add tAdd]; 
  
dependency= [0 0 0 0 0 
             1 0 0 0 0 
             0 1 0 0 0 
             0 1 1 0 0 
             0 1 0 1 0]; 
          
components = [device1;device2;device3;device4;device5]; 
compNames = [ 'SIE        ' 
              'Memory     ' 
              'Adder1     ' 
              'Multiplier ' 
              'Adder2     ']; 
  
           
graphON = 0; 
if graphON == 1; 
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    [totHUP totDelay] = HUPBoxes(components,dependency,compNames); 
else 
    [totHUP totDelay] = totalHUPandDelay(components,dependency,compNames); 
end 
 

 

FILE: model_Linear_Uniform_Compact.m 

function [totHUP totDelay] = model_Linear_Uniform_Compact(n,numSegs) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% model_Linear_Uniform_Compact.m                                          % 
%                                                                         % 
% This function produces the HUP and delay for a compact model of a       % 
% linear NFG using uniform segmentation.                                  % 
%                                                                         % 
% function [totHUP totDelay] = model_Linear_Uniform_Compact(n,numSegs)    % 
%                                                                         %   
%   Input:            n:      number of bits in the system                % 
%                                                                         % 
%               numSegs:      number of segments in the memory            % 
%                                                                         % 
%  Output:       totHUP:    hardware utilization percentage               % 
%            totalDelay:    total composite circuit delay                 % 
%  Comments:                                                              % 
%                                                                         %    
% Created by:  Tim Knudstrup                                              % 
%       Date:  25 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  
k=ceil(log2(numSegs));  % number of address lines to the coefficients Memory 
WordWidth=k+n;          % 2 n-bit numbers are stored in the Coefficients Memory 
  
[SUP_mult MUP_mult BUP_mult tMult] = 
HUandDelay(ceil(n/2),'Mult18x18',WordWidth); 
[SUP_mem MUP_mem BUP_mem tMem] = HUandDelay(k,'MEM',WordWidth); 
[SUP_add MUP_add BUP_add tAdd] = HUandDelay(n,'Adder',WordWidth); 
  
HUP_mult= HUP(SUP_mult,MUP_mult,BUP_mult); 
HUP_mem= HUP(SUP_mem, MUP_mem, BUP_mem); 
HUP_add= HUP(SUP_add, MUP_add, BUP_add); 
  
device1 = [HUP_mem tMem]; 
device2 = [HUP_mult tMult]; 
device3 = [HUP_add tAdd]; 
  
dependency= [0 0 0  
             1 0 0 
             1 1 0]; 
components = [device1;device2;device3]; 
compNames = [ 'Memory     ' 
              'Multiplier ' 
              'Adder      ']; 
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graphON = 0; 
if graphON == 1; 
    [totHUP totDelay] = HUPBoxes(components,dependency,compNames); 
else 
    [totHUP totDelay] = totalHUPandDelay(components,dependency,compNames); 
end 
 
 

 

FILE: model_Quad_NonUniform_Basic.m 

function [totHUP totDelay] = model_Quad_NonUniform_Basic(n,numSegs) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% model_Quad_NonUniform_Basic.m                                           % 
%                                                                         % 
% This function produces the HUP and delay for a model of a quadratic NFG % 
%   using nonuniform segmentation.                                        % 
%                                                                         % 
% function [totHUP totDelay] = model_Quad_NonUniform_Basic(n,numSegs)     % 
%                                                                         %   
%   Input:            n:      number of bits in the system                % 
%                                                                         % 
%               numSegs:      number of segments in the memory            % 
%                                                                         % 
%  Output:       totHUP:    hardware utilization percentage               % 
%            totalDelay:    total composite circuit delay                 % 
%  Comments:                                                              % 
%                                                                         %    
% Created by:  Tim Knudstrup                                              % 
%       Date:  25 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  
  
k=ceil(log2(numSegs));  % number of address lines to the coefficients Memory 
WordWidth=3*n;          % 3 n-bit numbers are stored in the Coefficients Memory 
  
  
[SUP_SIE MUP_SIE BUP_SIE tSIE] = HUandDelay(n,'SIE',k); 
[SUP_mem MUP_mem BUP_mem tMem] = HUandDelay(k,'MEM',WordWidth); 
[SUP_mult_2N MUP_mult_2N BUP_mult_2N tMult_2N] = 
HUandDelay(n,'Mult18x18',WordWidth); 
[SUP_mult_3N MUP_mult_3N BUP_mult_3N tMult_3N] = 
HUandDelay(ceil(1.5*n),'Mult18x18',WordWidth); 
[SUP_add_2N MUP_add_2N BUP_add_2N tAdd_2N] = HUandDelay(2*n,'Adder',WordWidth); 
[SUP_add_3N MUP_add_3N BUP_add_3N tAdd_3N] = HUandDelay(3*n,'Adder',WordWidth); 
  
HUP_SIE= HUP(SUP_SIE, MUP_SIE, BUP_SIE); 
HUP_mem= HUP(SUP_mem, MUP_mem, BUP_mem); 
  
HUP_mult_2N = HUP(SUP_mult_2N,MUP_mult_2N,BUP_mult_2N); 
HUP_mult_3N = HUP(SUP_mult_3N,MUP_mult_3N,BUP_mult_3N); 
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HUP_add_2N= HUP(SUP_add_2N, MUP_add_2N, BUP_add_2N); 
HUP_add_3N= HUP(SUP_add_3N, MUP_add_3N, BUP_add_3N); 
  
device1 = [HUP_SIE tSIE]; 
device2 = [HUP_mem tMem]; 
device3 = [HUP_mult_2N tMult_2N]; 
device4 = [HUP_mult_2N tMult_2N]; 
device5 = [HUP_mult_3N tMult_3N]; 
device6 = [HUP_add_2N tAdd_2N]; 
device7 = [HUP_add_3N tAdd_3N]; 
  
dependency= [0 0 0 0 0 0 0 
             1 0 0 0 0 0 0  
             0 0 0 0 0 0 0 
             0 1 0 0 0 0 0  
             0 1 1 0 0 0 0 
             0 1 0 1 0 0 0 
             0 0 0 0 1 1 0  ]; 
          
components = [device1;device2;device3;device4;device5; device6; device7]; 
compNames = [ 'SIE          ' 
              'Coeff. Table ' 
              'Multiplier 1 ' 
              'Multiplier 2 ' 
              'Multiplier 3 ' 
              'Adder 1      ' 
              'Adder 2      ']; 
  
           
graphON = 0; 
if graphON == 1; 
    [totHUP totDelay] = HUPBoxes(components,dependency,compNames); 
else 
    [totHUP totDelay] = totalHUPandDelay(components,dependency,compNames); 
end 
 
 

 

FILE: model_Quad_Uniform_Basic.m 

function [totHUP totDelay] = model_Quad_Uniform_Basic(n,numSegs) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% model_Quad_Uniform_Basic.m                                              % 
%                                                                         % 
% This function produces the HUP and delay for a basic model of a         % 
%   quadratic NFG using uniform segmentation.                             % 
%                                                                         % 
% function [totHUP totDelay] = model_Quad_Uniform_Basic(n,numSegs)        % 
%                                                                         %   
%   Input:            n:      number of bits in the system                % 
%                                                                         % 
%               numSegs:      number of segments in the memory            % 
%                                                                         % 
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%  Output:       totHUP:    hardware utilization percentage               % 
%            totalDelay:    total composite circuit delay                 % 
%  Comments:                                                              % 
%                                                                         %    
% Created by:  Tim Knudstrup                                              % 
%       Date:  25 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  
  
k=ceil(log2(numSegs));  % number of address lines to the coefficients Memory 
WordWidth=3*n;          % 3 n-bit numbers are stored in the Coefficients Memory 
  
  
%[SUP_SIE MUP_SIE BUP_SIE tSIE] = HUandDelay(n,'SIE',k); 
[SUP_mem MUP_mem BUP_mem tMem] = HUandDelay(k,'MEM',WordWidth); 
[SUP_mult_2N MUP_mult_2N BUP_mult_2N tMult_2N] = 
HUandDelay(n,'Mult18x18',WordWidth); 
[SUP_mult_3N MUP_mult_3N BUP_mult_3N tMult_3N] = 
HUandDelay(ceil(1.5*n),'Mult18x18',WordWidth); 
[SUP_add_2N MUP_add_2N BUP_add_2N tAdd_2N] = HUandDelay(2*n,'Adder',WordWidth); 
[SUP_add_3N MUP_add_3N BUP_add_3N tAdd_3N] = HUandDelay(3*n,'Adder',WordWidth); 
  
%HUP_SIE= HUP(SUP_SIE, MUP_SIE, BUP_SIE); 
HUP_mem= HUP(SUP_mem, MUP_mem, BUP_mem); 
  
HUP_mult_2N = HUP(SUP_mult_2N,MUP_mult_2N,BUP_mult_2N); 
HUP_mult_3N = HUP(SUP_mult_3N,MUP_mult_3N,BUP_mult_3N); 
  
HUP_add_2N= HUP(SUP_add_2N, MUP_add_2N, BUP_add_2N); 
HUP_add_3N= HUP(SUP_add_3N, MUP_add_3N, BUP_add_3N); 
  
%device1 = [HUP_SIE tSIE]; 
device1 = [HUP_mem tMem]; 
device2 = [HUP_mult_2N tMult_2N]; 
device3 = [HUP_mult_2N tMult_2N]; 
device4 = [HUP_mult_3N tMult_3N]; 
device5 = [HUP_add_2N tAdd_2N]; 
device6 = [HUP_add_3N tAdd_3N]; 
  
dependency= [0 0 0 0 0 0  
             0 0 0 0 0 0   
             1 0 0 0 0 0  
             1 1 0 0 0 0   
             1 0 1 0 0 0  
             0 0 0 1 1 0   ]; 
          
components = [device1;device2;device3;device4;device5; device6;]; 
compNames = [ 'Coeff. Table ' 
              'Multiplier 1 ' 
              'Multiplier 2 ' 
              'Multiplier 3 ' 
              'Adder 1      ' 
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              'Adder 2      ']; 
  
           
graphON = 0; 
if graphON == 1; 
    [totHUP totDelay] = HUPBoxes(components,dependency,compNames); 
else 
    [totHUP totDelay] = totalHUPandDelay(components,dependency,compNames); 
end 
              
  
 
 

 

FILE: model_Quad_NonUniform_Compact.m 

function [totHUP totDelay] = model_Quad_NonUniform_Compact(n,numSegs) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% model_Quad_NonUniform_Compact.m                                         % 
%                                                                         % 
% This function produces the HUP and delay for a model of a compact       % 
%   quadratic NFG using nonuniform segmentation.                          % 
%                                                                         % 
% function [totHUP totDelay] = model_Quad_NonUniform_Compact(n,numSegs)   % 
%                                                                         %   
%   Input:            n:      number of bits in the system                % 
%                                                                         % 
%               numSegs:      number of segments in the memory            % 
%                                                                         % 
%  Output:       totHUP:    hardware utilization percentage               % 
%            totalDelay:    total composite circuit delay                 % 
%  Comments:                                                              % 
%                                                                         %    
% Created by:  Tim Knudstrup                                              % 
%       Date:  25 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  
k=ceil(log2(numSegs));  % number of address lines to the coefficients Memory 
q1=n/2;                 % these are just example q's 
q2=n/2; 
WordWidth=4*n-q1-q2;          %  Coefficients Memory 
  
  
[SUP_SIE MUP_SIE BUP_SIE tSIE] = HUandDelay(n,'SIE',k); 
[SUP_mem MUP_mem BUP_mem tMem] = HUandDelay(k,'MEM',WordWidth); 
[SUP_mult_q MUP_mult_q BUP_mult_q tMult_q] = 
HUandDelay(ceil(q2/2),'Mult18x18',WordWidth); 
[SUP_mult_N MUP_mult_N BUP_mult_N tMult_N] = 
HUandDelay(ceil(n/2),'Mult18x18',WordWidth); 
[SUP_add MUP_add BUP_add tAdd] = HUandDelay(n,'Adder',WordWidth); 
  
HUP_mem= HUP(SUP_mem, MUP_mem, BUP_mem); 
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HUP_SIE= HUP(SUP_SIE, MUP_SIE, BUP_SIE); 
HUP_mult_q = HUP(SUP_mult_q,MUP_mult_q,BUP_mult_q); 
HUP_mult_N = HUP(SUP_mult_N,MUP_mult_N,BUP_mult_N); 
HUP_add= HUP(SUP_add, MUP_add, BUP_add); 
  
device1 = [HUP_SIE tSIE]; 
device2 = [HUP_mem tMem]; 
device3 = [HUP_add tAdd]; 
device4 = [HUP_mult_q tMult_q]; 
device5 = [HUP_mult_N tMult_N]; 
device6 = [HUP_mult_N tMult_N]; 
device7 = [HUP_add tAdd]; 
device8 = [HUP_add tAdd]; 
  
dependency= [0 0 0 0 0 0 0 0 
             1 0 0 0 0 0 0 0 
             0 1 0 0 0 0 0 0 
             0 0 1 0 0 0 0 0  
             0 1 1 0 0 0 0 0 
             0 1 0 1 0 0 0 0 
             0 1 0 0 1 0 0 0 
             0 0 0 0 0 1 1 0]; 
          
components = [device1;device2;device3;device4;device5; device6; device7; 
device8]; 
compNames = [ 'SIE          ' 
              'Coeff. Table ' 
              'Adder 1      ' 
              'Multiplier 1 ' 
              'Multiplier 2 ' 
              'Multiplier 3 ' 
              'Adder 2      ' 
              'Adder 3      ']; 
  
           
graphON = 0; 
if graphON == 1; 
    [totHUP totDelay] = HUPBoxes(components,dependency,compNames); 
else 
    [totHUP totDelay] = totalHUPandDelay(components,dependency,compNames); 
end 
 
 

 

FILE: model_Quad_Uniform_Compact.m 

function [totHUP totDelay] = model_Quad_Uniform_Compact(n,numSegs) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% model_Quad_Uniform_Compact.m                                            % 
%                                                                         % 
% This function produces the HUP and delay for a  model of a              % 
%   compact quadratic NFG using uniform segmentation.                     % 
%                                                                         % 
% function [totHUP totDelay] = model_Quad_Uniform_Compact(n,numSegs)      % 
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%                                                                         %   
%   Input:            n:      number of bits in the system                % 
%                                                                         % 
%               numSegs:      number of segments in the memory            % 
%                                                                         % 
%  Output:       totHUP:    hardware utilization percentage               % 
%            totalDelay:    total composite circuit delay                 % 
%  Comments:                                                              % 
%                                                                         %    
% Created by:  Tim Knudstrup                                              % 
%       Date:  25 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  
  
k=ceil(log2(numSegs));  % number of address lines to the coefficients Memory 
q1=n/2;                 % these are just example q's 
q2=n/2; 
WordWidth=4*n-q1-q2;          % Coefficients Memory 
  
  
[SUP_mem MUP_mem BUP_mem tMem] = HUandDelay(k,'MEM',WordWidth); 
[SUP_mult_q MUP_mult_q BUP_mult_q tMult_q] = 
HUandDelay(ceil(q2/2),'Mult18x18',WordWidth); 
[SUP_mult_N MUP_mult_N BUP_mult_N tMult_N] = 
HUandDelay(ceil(n/2),'Mult18x18',WordWidth); 
[SUP_add MUP_add BUP_add tAdd] = HUandDelay(n,'Adder',WordWidth); 
  
HUP_mem= HUP(SUP_mem, MUP_mem, BUP_mem); 
HUP_mult_q = HUP(SUP_mult_q,MUP_mult_q,BUP_mult_q); 
HUP_mult_N = HUP(SUP_mult_N,MUP_mult_N,BUP_mult_N); 
  
HUP_add= HUP(SUP_add, MUP_add, BUP_add); 
  
device1 = [HUP_mem tMem]; 
device2 = [HUP_add tAdd]; 
device3 = [HUP_mult_q tMult_q]; 
device4 = [HUP_mult_N tMult_N]; 
device5 = [HUP_mult_N tMult_N]; 
device6 = [HUP_add tAdd]; 
device7 = [HUP_add tAdd]; 
  
dependency= [0 0 0 0 0 0 0 
             1 0 0 0 0 0 0 
             0 1 0 0 0 0 0 
             1 1 0 0 0 0 0  
             1 0 1 0 0 0 0 
             1 0 0 1 0 0 0 
             0 0 0 0 1 1 0]; 
          
components = [device1;device2;device3;device4;device5; device6;device7]; 
compNames = [ 'Coeff. Table ' 
              'Adder 1      ' 
              'Multiplier 1 ' 
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              'Multiplier 2 ' 
              'Multiplier 3 ' 
              'Adder 2      ' 
              'Adder 3      ']; 
  
           
graphON = 0; 
if graphON == 1; 
    [totHUP totDelay] = HUPBoxes(components,dependency,compNames); 
else 
    [totHUP totDelay] = totalHUPandDelay(components,dependency,compNames); 
end 
 
 

 

FILE: myInt.m 

function [intVal]= myInt(f_symbol,a,b) 
  
%   This function returns an approximation for the integral of the symbolic 
%   function over the interval a to b.  The approximation is calculated 
%   using trapezoidal integration approximation. 
  
numPts=10000; 
  
rez=(b-a)/numPts; 
X=[a:rez:b]; 
y=(subs(f_symbol,X)); 
  
totSum = 0; 
width= X(2)-X(1); 
  
for ii=1:length(X)-1     
    incSum= width*y(ii)+0.5*width*(y(ii+1)-y(ii)); 
    totSum=totSum+incSum; 
end 
    
intVal=totSum; 
 

 

FILE: pickModel.m 

function [totHUP totDelay] = pickModel(modelNum,n,segs); 
  
%   This function returns the total HUP and Delay for a function 
%   implemented on an NFG model chosen by 'modelNum.'   
%   The default model is the basic linear NFG with uniform segmentation 
%   (LUB). 
  
switch modelNum 
    case 1 
        [totHUP totDelay] = model_Linear_Uniform_Basic(n,segs); 
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    case 2 
        [totHUP totDelay] = model_Linear_NonUniform_Basic(n,segs); 
    case 5 
        [totHUP totDelay] = model_Linear_Uniform_Compact(n,segs); 
    case 6 
        [totHUP totDelay] = model_Linear_NonUniform_Compact(n,segs); 
    case 3 
        [totHUP totDelay] = model_Quad_Uniform_Basic(n,segs); 
    case 4 
        [totHUP totDelay] = model_Quad_NonUniform_Basic(n,segs); 
    case 7 
        [totHUP totDelay] = model_Quad_Uniform_Compact(n,segs); 
    case 8 
        [totHUP totDelay] = model_Quad_NonUniform_Compact(n,segs); 
    otherwise 
        [totHUP totDelay] = model_Linear_Uniform_Basic(n,segs); 
end 
 
 

 

FILE: segments.m 

function [numSegs] = segments(f,xmin,xmax,n) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% segments.m                                                              % 
%                                                                         % 
% This function returns the number of required segments for LU, LN, QU, & % 
% QN NFGs for a given function (f) on an interval [xmin,xmax] for a       % 
% with n bits.                                                             % 
%                                                                         % 
%   function [numSegs] = segments(f,xmin,xmax,n)                          % 
%                                                                         % 
%   Input:             f:   string value of a function of x               % 
%             xmin,xmax :   NFG domain                                    %       
%                      n:   number of system bits, precision              % 
%                                                                         % 
%  Output:       numSegs:   4 by 1 vector returning the number of         % 
%                           segments for [LU;LN;QU;QB] NFGs               % 
%                                                                         % 
%  Comments:                                                              % 
%                                                                         % 
% Created by:  Tim Knudstrup                                              % 
%       Date:  20 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
clear numSegs numSegsLin_NONUNIFORM numSegsLin_UNIFORM ; 
clear numSegsQuad_NONUNIFORM numSegsQuad_UNIFORM; 
clear SegsLin SegsQuad; 
func = inline(f); 
  
syms 'x'  % 'epps'  % 'a' 'b' 
a=xmin; 
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b=xmax; 
epps=2^(-n-1); 
f_of_x=func(x); 
  
FirstDeriv= diff(f_of_x,'x'); 
SecondDeriv= diff(FirstDeriv,'x'); 
  
sqrt_2ndDeriv=sqrt((SecondDeriv)); 
%SegsLin = abs(0.25*int((sqrt_2ndDeriv),'x',a,b)/sqrt(epps)) 
numSegsLin_NONUNIFORM = ceil(0.25*myInt(abs(sqrt_2ndDeriv),a,b)/sqrt(epps)); 
thirdDeriv=diff(SecondDeriv,'x'); 
%SegsQuad = abs(0.25 * int(((thirdDeriv))^(1/3),a,b)/(3*epps)^(1/3)) 
numSegsQuad_NONUNIFORM = 
ceil(0.25*myInt(abs(thirdDeriv)^(1/3),a,b)/(3*epps)^(1/3)); 
  
%   Substituting values 
a=xmin; 
b=xmax; 
epps= 2^(-n-1); 
  
%numSegsLin_NONUNIFORM=ceil(abs(subs(SegsLin))); 
%numSegsQuad_NONUNIFORM=ceil(abs(subs(SegsQuad))); 
  
dummyX=[a:(b-a)/100:b]'; 
max_2ndDeriv=max(abs((subs(SecondDeriv,dummyX)))); 
segWidth_Linear=4*sqrt(epps/max_2ndDeriv); 
  
max_3rdDeriv=max(abs(subs(thirdDeriv,dummyX))); 
segWidth_Quad=4*(3*epps/max_3rdDeriv)^(1/3); 
  
numSegsLin_UNIFORM=ceil((b-a)/segWidth_Linear); 
numSegsQuad_UNIFORM=ceil((b-a)/segWidth_Quad); 
  
numSegs=[numSegsLin_UNIFORM; 
    numSegsLin_NONUNIFORM; 
    numSegsQuad_UNIFORM; 
    numSegsQuad_NONUNIFORM]; 
  

 

FILE: totalHUPandDelay.m 

function [totHUP totalDelay] = totalHUPandDelay(components,dependence,compNames) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% depBoxes.m                                                              % 
%                                                                         % 
% This function/program calculates the delay and percent hardware         % 
% utilization given up to 12 components and a dependence relationship.    % 
% It is used to calculate circuit components in series and in parallel    % 
% and the combined delay of multiple components which is dependent on     % 
% one components relationship to another.                                 % 
%                                                                         % 
%   This function was modified from HUPboxes, which plots the outputs     % 
%                                                                         % 
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% function [totHUP totalDelay] = 
totalHUPandDelay(components,dependence,compNames) 
%                                                                         % 
%   Input: components:   nx2 array of components arranged                 % 
%                        n = row number = the component number            % 
%                        Max number of ROWs is 12                         % 
%                                                                         % 
%                        each row contains :                              % 
%                        [ HUP timedelay ]                                % 
%                                                                         % 
%          dependence:   an nxn array that defines the dependence         % 
%                        of the components.                               % 
%                        For each row, the array should contain a 1 if    % 
%                        the component number (row#) has to wait until    % 
%                        another component is completed (in series).      % 
%                                                                         %  
%          compNames:    an nx1 column of strings, naming each component  % 
%                        strings must be the same length, can add extra   % 
%                        spaces.                                          % 
%                                                                         % 
%  Output:   totHUP:    hardware utilization percentage                   % 
%            totalDelay: total composite circuit delay                    % 
%  Comments:                                                              % 
%                                                                         % 
% Created by:  Tim Knudstrup                                              % 
%       Date:  25 September 2007                                          % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      
numComps=size(components); 
numComps=numComps(1); 
  
% Color list (each Row contains a different color code (upto 12)) 
Clist = [ 0.5 0 0 
          0   0 0.5   
          0 0.5 0  
          0.5 0.5 0 
          0.5 0 0.5 
          0 0.5 0.5 
          0.75 0 0 
          0  0 0.75 
          0 0.75 0 
          0.75 0.75 0 
          0.75 0 0.75 
          0 0.75 0.75];        
  
compEnds=zeros(1,numComps); 
compStarts=compEnds; 
  
compTop=compEnds; 
compBot=compEnds; 
  
for comp=1:numComps 
    if (sum(dependence(comp,:))==0) 
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        compStarts(comp)=0; 
    else 
        compDep=find(dependence(comp,:)); 
        compStarts(comp)=max(compEnds(compDep)); 
    end 
    compEnds(comp)=compStarts(comp)+components(comp,2); 
end 
compStarts; 
compEnds; 
  
for comp = 1:numComps     
    if (comp==1)  
        compBot(comp)=0; 
    else 
        sameStart=find(compStarts(1:comp-1)==compStarts(comp)); 
        if isempty(sameStart) 
            compDep=find(dependence(comp,:)); 
            [y indx] = max(compEnds(compDep)); % finds index into  
            compBot(comp)=compBot(indx); 
        else 
            largestTop=max(sameStart); 
            compBot(comp)=compTop(largestTop); 
        end 
    end 
    compTop(comp)=compBot(comp)+components(comp,1); 
end 
compBot; 
compTop; 
    
% OUTPUT Data 
totalDelay=max(compEnds); 
totHUP=sum(components(:,1)); 
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APPENDIX B. DATA COLLECTION 

B.1 DATA COLLECTION WITH XILINX ISE PROJECT NAVIGATOR  

Xilinx ISE Project Navigator was used extensively to construct schematic and 

behavioral sources in order to estimate hardware utilization and delay.  

1. HDL Sources 

Behavioral VHDL sources were written in Xilinx ISE Project Navigator for 

multipliers and adders.  Some circuits were constructed from schematics using Xilinx’s 

primitive hardware.  These circuits produced verilog code during the synthesis process.  

The vf-files for the schematic circuits are also shown in this appendix.   

The VHDL sources have been changed during the data collection phase of this 

thesis in order to collect information on various sized circuits.  For example, the number 

of input and output bits of the behavioral adder were altered for various values between 1 

and 129.   The VHDL code shown in this appendix is the most recently used file.   

FILE: Adder_64.vhd 

-------------------------------------------------------------------------------- 
-- Company:        NPS 
-- Engineer:       Tim Knudstrup 
-- 
-- Create Date:    08/2/07 
-- Design Name:     
-- Module Name:    adder_64bit - Behavioral 
-- Project Name:    
-- Target Device:   
-- Tool versions:   
-- Description: 
-- 
-- Dependencies: 
--  
-- Revision: 
-- Revision 0.01 - File Created 
-- Additional Comments: 
--  
-------------------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
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---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity Adder_64 is  
    Port (    a : in  std_logic_vector(128 downto 0); 
              b : in  std_logic_vector(128 downto 0);                 
            sum : out std_logic_vector(128  downto 0)); 
end Adder_64; 
 
architecture Behavioral of Adder_64 is   
 
begin    
     
  sum <= a+b; 
       
end Behavioral; 

 

FILE: Multiplier.vhd 

-------------------------------------------------------------------------------- 
-- Company:        NPS 
-- Engineer:       Tim Knudstrup 
-- 
-- Create Date:    08/2/07 
-- Design Name:     
-- Module Name:    Multiplier - Behavioral 
-- Project Name:    
-- Target Device:   
-- Tool versions:   
-- Description: 
-- 
-- Dependencies: 
--  
-- Revision: 
-- Revision 0.01 - File Created 
-- Additional Comments: 
--  
-------------------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity Multiplier is  
    Port (    a : in  std_logic_vector(16 downto 0); 
              b : in  std_logic_vector(16 downto 0);                 
            sum : out std_logic_vector(33 downto 0)); 
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end Multiplier; 
 
architecture Behavioral of Multiplier is   
 
begin         
  sum <= a*b; 
       
end Behavioral; 

 

FILE: mux128to1.vf 

//////////////////////////////////////////////////////////////////////////////// 
// Copyright (c) 1995-2007 Xilinx, Inc.  All rights reserved. 
//////////////////////////////////////////////////////////////////////////////// 
//   ____  ____  
//  /   /\/   /  
// /___/  \  /    Vendor: Xilinx  
// \   \   \/     Version : 9.2.02i 
//  \   \         Application : sch2verilog 
//  /   /         Filename : mux128to1.vf 
// /___/   /\     Timestamp : 11/11/2007 12:03:00 
// \   \  /  \  
//  \___\/\___\  
// 
//Command: C:\Xilinx92i\bin\nt\sch2verilog.exe -intstyle ise -family virtex2 -w 
"C:/Documents and Settings/HP_Owner/My 
Documents/schoolStuff/Thesis/VHDL/ThesisVHDLSims/mux128to1.sch" mux128to1.vf 
//Design Name: mux128to1 
//Device: virtex2 
//Purpose: 
//    This verilog netlist is translated from an ECS schematic.It can be  
//    synthesized and simulated, but it should not be modified.  
// 
`timescale 1ns / 1ps 
 
module M2_1E_MXILINX_mux128to1(D0,  
                               D1,  
                               E,  
                               S0,  
                               O); 
 
    input D0; 
    input D1; 
    input E; 
    input S0; 
   output O; 
    
   wire M0; 
   wire M1; 
    
   AND3 I_36_30 (.I0(D1),  
                 .I1(E),  
                 .I2(S0),  
                 .O(M1)); 
   AND3B1 I_36_31 (.I0(S0),  
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                   .I1(E),  
                   .I2(D0),  
                   .O(M0)); 
   OR2 I_36_38 (.I0(M1),  
                .I1(M0),  
                .O(O)); 
endmodule 
`timescale 1ns / 1ps 
 
module M4_1E_MXILINX_mux128to1(D0,  
                               D1,  
                               D2,  
                               D3,  
                               E,  
                               S0,  
                               S1,  
                               O); 
 
    input D0; 
    input D1; 
    input D2; 
    input D3; 
    input E; 
    input S0; 
    input S1; 
   output O; 
    
   wire M01; 
   wire M23; 
    
   M2_1E_MXILINX_mux128to1 I_M01 (.D0(D0),  
                                  .D1(D1),  
                                  .E(E),  
                                  .S0(S0),  
                                  .O(M01)); 
   // synthesis attribute HU_SET of I_M01 is "I_M01_1" 
   M2_1E_MXILINX_mux128to1 I_M23 (.D0(D2),  
                                  .D1(D3),  
                                  .E(E),  
                                  .S0(S0),  
                                  .O(M23)); 
   // synthesis attribute HU_SET of I_M23 is "I_M23_0" 
   MUXF5 I_O (.I0(M01),  
              .I1(M23),  
              .S(S1),  
              .O(O)); 
endmodule 
`timescale 1ns / 1ps 
 
module mux128to1(DataIn,  
                 Sel,  
                 XLXN_9,  
                 XLXN_20); 
 
    input [127:0] DataIn; 
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    input [6:0] Sel; 
    input XLXN_9; 
   output XLXN_20; 
    
   wire XLXN_1; 
   wire XLXN_2; 
   wire XLXN_3; 
   wire XLXN_4; 
    
   mux32to1 XLXI_2 (.CE(XLXN_9),  
                    .dataIn(DataIn[127:96]),  
                    .Sel(Sel[4:0]),  
                    .XLXN_125(XLXN_1)); 
   mux32to1 XLXI_3 (.CE(XLXN_9),  
                    .dataIn(DataIn[95:64]),  
                    .Sel(Sel[4:0]),  
                    .XLXN_125(XLXN_2)); 
   mux32to1 XLXI_4 (.CE(XLXN_9),  
                    .dataIn(DataIn[63:32]),  
                    .Sel(Sel[4:0]),  
                    .XLXN_125(XLXN_3)); 
   mux32to1 XLXI_5 (.CE(XLXN_9),  
                    .dataIn(DataIn[31:0]),  
                    .Sel(Sel[4:0]),  
                    .XLXN_125(XLXN_4)); 
   M4_1E_MXILINX_mux128to1 XLXI_6 (.D0(XLXN_1),  
                                   .D1(XLXN_2),  
                                   .D2(XLXN_3),  
                                   .D3(XLXN_4),  
                                   .E(XLXN_9),  
                                   .S0(Sel[5]),  
                                   .S1(Sel[6]),  
                                   .O(XLXN_20)); 
   // synthesis attribute HU_SET of XLXI_6 is "XLXI_6_2" 
endmodule 

 

FILE: fanouts.vf 

//////////////////////////////////////////////////////////////////////////////// 
// Copyright (c) 1995-2007 Xilinx, Inc.  All rights reserved. 
//////////////////////////////////////////////////////////////////////////////// 
//   ____  ____  
//  /   /\/   /  
// /___/  \  /    Vendor: Xilinx  
// \   \   \/     Version : 9.2.02i 
//  \   \         Application : sch2verilog 
//  /   /         Filename : fanouts.vf 
// /___/   /\     Timestamp : 11/11/2007 12:03:12 
// \   \  /  \  
//  \___\/\___\  
// 
//Command: C:\Xilinx92i\bin\nt\sch2verilog.exe -intstyle ise -family virtex2 -w 
"C:/Documents and Settings/HP_Owner/My 
Documents/schoolStuff/Thesis/VHDL/ThesisVHDLSims/fanouts.sch" fanouts.vf 
//Design Name: fanouts 
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//Device: virtex2 
//Purpose: 
//    This verilog netlist is translated from an ECS schematic.It can be  
//    synthesized and simulated, but it should not be modified.  
// 
`timescale 1ns / 1ps 
 
module AND12_MXILINX_fanouts(I0,  
                             I1,  
                             I2,  
                             I3,  
                             I4,  
                             I5,  
                             I6,  
                             I7,  
                             I8,  
                             I9,  
                             I10,  
                             I11,  
                             O); 
 
    input I0; 
    input I1; 
    input I2; 
    input I3; 
    input I4; 
    input I5; 
    input I6; 
    input I7; 
    input I8; 
    input I9; 
    input I10; 
    input I11; 
   output O; 
    
   wire dummy; 
   wire S0; 
   wire S1; 
   wire S2; 
   wire O_DUMMY; 
    
   assign O = O_DUMMY; 
   FMAP I_36_29 (.I1(I0),  
                 .I2(I1),  
                 .I3(I2),  
                 .I4(I3),  
                 .O(S0)); 
   // synthesis attribute RLOC of I_36_29 is "X0Y0" 
   AND4 I_36_110 (.I0(I0),  
                  .I1(I1),  
                  .I2(I2),  
                  .I3(I3),  
                  .O(S0)); 
   AND4 I_36_127 (.I0(I4),  
                  .I1(I5),  
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                  .I2(I6),  
                  .I3(I7),  
                  .O(S1)); 
   FMAP I_36_138 (.I1(I4),  
                  .I2(I5),  
                  .I3(I6),  
                  .I4(I7),  
                  .O(S1)); 
   // synthesis attribute RLOC of I_36_138 is "X0Y0" 
   FMAP I_36_142 (.I1(I8),  
                  .I2(I9),  
                  .I3(I10),  
                  .I4(I11),  
                  .O(S2)); 
   // synthesis attribute RLOC of I_36_142 is "X0Y1" 
   AND4 I_36_151 (.I0(I8),  
                  .I1(I9),  
                  .I2(I10),  
                  .I3(I11),  
                  .O(S2)); 
   AND3 I_36_177 (.I0(S0),  
                  .I1(S1),  
                  .I2(S2),  
                  .O(O_DUMMY)); 
   FMAP I_36_181 (.I1(S0),  
                  .I2(S1),  
                  .I3(S2),  
                  .I4(dummy),  
                  .O(O_DUMMY)); 
   // synthesis attribute RLOC of I_36_181 is "X0Y1" 
endmodule 
`timescale 1ns / 1ps 
 
module AND16_MXILINX_fanouts(I0,  
                             I1,  
                             I2,  
                             I3,  
                             I4,  
                             I5,  
                             I6,  
                             I7,  
                             I8,  
                             I9,  
                             I10,  
                             I11,  
                             I12,  
                             I13,  
                             I14,  
                             I15,  
                             O); 
 
    input I0; 
    input I1; 
    input I2; 
    input I3; 
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    input I4; 
    input I5; 
    input I6; 
    input I7; 
    input I8; 
    input I9; 
    input I10; 
    input I11; 
    input I12; 
    input I13; 
    input I14; 
    input I15; 
   output O; 
    
   wire CIN; 
   wire C0; 
   wire C1; 
   wire C2; 
   wire S0; 
   wire S1; 
   wire S2; 
   wire S3; 
   wire XLXN_46; 
    
   MUXCY_L I_36_2 (.CI(CIN),  
                   .DI(XLXN_46),  
                   .S(S0),  
                   .LO(C0)); 
   // synthesis attribute RLOC of I_36_2 is "X0Y0" 
   FMAP I_36_29 (.I1(I0),  
                 .I2(I1),  
                 .I3(I2),  
                 .I4(I3),  
                 .O(S0)); 
   // synthesis attribute RLOC of I_36_29 is "X0Y0" 
   VCC I_36_107 (.P(CIN)); 
   GND I_36_109 (.G(XLXN_46)); 
   AND4 I_36_110 (.I0(I0),  
                  .I1(I1),  
                  .I2(I2),  
                  .I3(I3),  
                  .O(S0)); 
   AND4 I_36_127 (.I0(I4),  
                  .I1(I5),  
                  .I2(I6),  
                  .I3(I7),  
                  .O(S1)); 
   MUXCY_L I_36_129 (.CI(C0),  
                     .DI(XLXN_46),  
                     .S(S1),  
                     .LO(C1)); 
   // synthesis attribute RLOC of I_36_129 is "X0Y0" 
   FMAP I_36_138 (.I1(I4),  
                  .I2(I5),  
                  .I3(I6),  
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                  .I4(I7),  
                  .O(S1)); 
   // synthesis attribute RLOC of I_36_138 is "X0Y0" 
   FMAP I_36_142 (.I1(I8),  
                  .I2(I9),  
                  .I3(I10),  
                  .I4(I11),  
                  .O(S2)); 
   // synthesis attribute RLOC of I_36_142 is "X0Y1" 
   MUXCY_L I_36_147 (.CI(C1),  
                     .DI(XLXN_46),  
                     .S(S2),  
                     .LO(C2)); 
   // synthesis attribute RLOC of I_36_147 is "X0Y1" 
   AND4 I_36_151 (.I0(I8),  
                  .I1(I9),  
                  .I2(I10),  
                  .I3(I11),  
                  .O(S2)); 
   AND4 I_36_161 (.I0(I12),  
                  .I1(I13),  
                  .I2(I14),  
                  .I3(I15),  
                  .O(S3)); 
   MUXCY I_36_165 (.CI(C2),  
                   .DI(XLXN_46),  
                   .S(S3),  
                   .O(O)); 
   // synthesis attribute RLOC of I_36_165 is "X0Y1" 
   FMAP I_36_170 (.I1(I12),  
                  .I2(I13),  
                  .I3(I14),  
                  .I4(I15),  
                  .O(S3)); 
   // synthesis attribute RLOC of I_36_170 is "X0Y1" 
endmodule 
`timescale 1ns / 1ps 
 
module AND9_MXILINX_fanouts(I0,  
                            I1,  
                            I2,  
                            I3,  
                            I4,  
                            I5,  
                            I6,  
                            I7,  
                            I8,  
                            O); 
 
    input I0; 
    input I1; 
    input I2; 
    input I3; 
    input I4; 
    input I5; 
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    input I6; 
    input I7; 
    input I8; 
   output O; 
    
   wire dummy; 
   wire S0; 
   wire S1; 
   wire O_DUMMY; 
    
   assign O = O_DUMMY; 
   FMAP I_36_29 (.I1(I0),  
                 .I2(I1),  
                 .I3(I2),  
                 .I4(I3),  
                 .O(S0)); 
   // synthesis attribute RLOC of I_36_29 is "X0Y0" 
   AND4 I_36_110 (.I0(I0),  
                  .I1(I1),  
                  .I2(I2),  
                  .I3(I3),  
                  .O(S0)); 
   AND4 I_36_127 (.I0(I4),  
                  .I1(I5),  
                  .I2(I6),  
                  .I3(I7),  
                  .O(S1)); 
   FMAP I_36_138 (.I1(I4),  
                  .I2(I5),  
                  .I3(I6),  
                  .I4(I7),  
                  .O(S1)); 
   // synthesis attribute RLOC of I_36_138 is "X0Y0" 
   FMAP I_36_142 (.I1(S0),  
                  .I2(S1),  
                  .I3(I8),  
                  .I4(dummy),  
                  .O(O_DUMMY)); 
   // synthesis attribute RLOC of I_36_142 is "X0Y1" 
   AND3 I_36_176 (.I0(S0),  
                  .I1(S1),  
                  .I2(I8),  
                  .O(O_DUMMY)); 
endmodule 
`timescale 1ns / 1ps 
 
module AND8_MXILINX_fanouts(I0,  
                            I1,  
                            I2,  
                            I3,  
                            I4,  
                            I5,  
                            I6,  
                            I7,  
                            O); 
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    input I0; 
    input I1; 
    input I2; 
    input I3; 
    input I4; 
    input I5; 
    input I6; 
    input I7; 
   output O; 
    
   wire dummy; 
   wire S0; 
   wire S1; 
   wire O_DUMMY; 
    
   assign O = O_DUMMY; 
   FMAP I_36_29 (.I1(I0),  
                 .I2(I1),  
                 .I3(I2),  
                 .I4(I3),  
                 .O(S0)); 
   // synthesis attribute RLOC of I_36_29 is "X0Y0" 
   AND4 I_36_110 (.I0(I0),  
                  .I1(I1),  
                  .I2(I2),  
                  .I3(I3),  
                  .O(S0)); 
   AND4 I_36_127 (.I0(I4),  
                  .I1(I5),  
                  .I2(I6),  
                  .I3(I7),  
                  .O(S1)); 
   FMAP I_36_138 (.I1(I4),  
                  .I2(I5),  
                  .I3(I6),  
                  .I4(I7),  
                  .O(S1)); 
   // synthesis attribute RLOC of I_36_138 is "X0Y0" 
   AND2 I_36_142 (.I0(S0),  
                  .I1(S1),  
                  .O(O_DUMMY)); 
   FMAP I_36_152 (.I1(S0),  
                  .I2(S1),  
                  .I3(dummy),  
                  .I4(dummy),  
                  .O(O_DUMMY)); 
   // synthesis attribute RLOC of I_36_152 is "X0Y1" 
endmodule 
`timescale 1ns / 1ps 
 
module AND7_MXILINX_fanouts(I0,  
                            I1,  
                            I2,  
                            I3,  
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                            I4,  
                            I5,  
                            I6,  
                            O); 
 
    input I0; 
    input I1; 
    input I2; 
    input I3; 
    input I4; 
    input I5; 
    input I6; 
   output O; 
    
   wire I36; 
   wire O_DUMMY; 
    
   assign O = O_DUMMY; 
   AND4 I_36_69 (.I0(I3),  
                 .I1(I4),  
                 .I2(I5),  
                 .I3(I6),  
                 .O(I36)); 
   AND4 I_36_85 (.I0(I0),  
                 .I1(I1),  
                 .I2(I2),  
                 .I3(I36),  
                 .O(O_DUMMY)); 
   FMAP I_36_98 (.I1(I0),  
                 .I2(I1),  
                 .I3(I2),  
                 .I4(I36),  
                 .O(O_DUMMY)); 
   // synthesis attribute RLOC of I_36_98 is "X0Y0" 
   FMAP I_36_110 (.I1(I3),  
                  .I2(I4),  
                  .I3(I5),  
                  .I4(I6),  
                  .O(I36)); 
   // synthesis attribute RLOC of I_36_110 is "X0Y0" 
endmodule 
`timescale 1ns / 1ps 
 
module AND6_MXILINX_fanouts(I0,  
                            I1,  
                            I2,  
                            I3,  
                            I4,  
                            I5,  
                            O); 
 
    input I0; 
    input I1; 
    input I2; 
    input I3; 
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    input I4; 
    input I5; 
   output O; 
    
   wire dummy; 
   wire I35; 
   wire O_DUMMY; 
    
   assign O = O_DUMMY; 
   AND3 I_36_69 (.I0(I3),  
                 .I1(I4),  
                 .I2(I5),  
                 .O(I35)); 
   AND4 I_36_85 (.I0(I0),  
                 .I1(I1),  
                 .I2(I2),  
                 .I3(I35),  
                 .O(O_DUMMY)); 
   FMAP I_36_93 (.I1(I3),  
                 .I2(I4),  
                 .I3(I5),  
                 .I4(dummy),  
                 .O(I35)); 
   // synthesis attribute RLOC of I_36_93 is "X0Y0" 
   FMAP I_36_94 (.I1(I0),  
                 .I2(I1),  
                 .I3(I2),  
                 .I4(I35),  
                 .O(O_DUMMY)); 
   // synthesis attribute RLOC of I_36_94 is "X0Y0" 
endmodule 
`timescale 1ns / 1ps 
 
module fanouts(XLXN_115,  
               XLXN_520,  
               XLXN_537,  
               XLXN_118,  
               XLXN_144,  
               XLXN_483,  
               XLXN_484,  
               XLXN_485,  
               XLXN_486,  
               XLXN_487,  
               XLXN_521,  
               XLXN_522,  
               XLXN_523,  
               XLXN_524,  
               XLXN_525,  
               XLXN_603); 
 
    input XLXN_115; 
    input XLXN_520; 
    input XLXN_537; 
   output XLXN_118; 
   output XLXN_144; 
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   output XLXN_483; 
   output XLXN_484; 
   output XLXN_485; 
   output XLXN_486; 
   output XLXN_487; 
   output XLXN_521; 
   output XLXN_522; 
   output XLXN_523; 
   output XLXN_524; 
   output XLXN_525; 
   output XLXN_603; 
    
   wire XLXN_11; 
   wire XLXN_112; 
   wire XLXN_152; 
   wire XLXN_212; 
   wire XLXN_249; 
   wire XLXN_258; 
   wire XLXN_503; 
   wire XLXN_506; 
   wire XLXN_509; 
   wire XLXN_517; 
    
   AND2 XLXI_3 (.I0(XLXN_115),  
                .I1(XLXN_115),  
                .O(XLXN_112)); 
   AND3 XLXI_4 (.I0(XLXN_112),  
                .I1(XLXN_112),  
                .I2(XLXN_112),  
                .O(XLXN_152)); 
   AND4 XLXI_5 (.I0(XLXN_152),  
                .I1(XLXN_152),  
                .I2(XLXN_152),  
                .I3(XLXN_152),  
                .O(XLXN_11)); 
   AND6_MXILINX_fanouts XLXI_7 (.I0(XLXN_11),  
                                .I1(XLXN_11),  
                                .I2(XLXN_11),  
                                .I3(XLXN_11),  
                                .I4(XLXN_11),  
                                .I5(XLXN_11),  
                                .O(XLXN_212)); 
   // synthesis attribute HU_SET of XLXI_7 is "XLXI_7_3" 
   AND16_MXILINX_fanouts XLXI_17 (.I0(XLXN_249),  
                                  .I1(XLXN_249),  
                                  .I2(XLXN_249),  
                                  .I3(XLXN_249),  
                                  .I4(XLXN_249),  
                                  .I5(XLXN_249),  
                                  .I6(XLXN_249),  
                                  .I7(XLXN_249),  
                                  .I8(XLXN_249),  
                                  .I9(XLXN_249),  
                                  .I10(XLXN_249),  
                                  .I11(XLXN_249),  
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                                  .I12(XLXN_249),  
                                  .I13(XLXN_249),  
                                  .I14(XLXN_249),  
                                  .I15(XLXN_249),  
                                  .O(XLXN_517)); 
   // synthesis attribute HU_SET of XLXI_17 is "XLXI_17_9" 
   AND8_MXILINX_fanouts XLXI_21 (.I0(XLXN_115),  
                                 .I1(XLXN_115),  
                                 .I2(XLXN_115),  
                                 .I3(XLXN_115),  
                                 .I4(XLXN_115),  
                                 .I5(XLXN_115),  
                                 .I6(XLXN_115),  
                                 .I7(XLXN_115),  
                                 .O(XLXN_118)); 
   // synthesis attribute HU_SET of XLXI_21 is "XLXI_21_0" 
   AND8_MXILINX_fanouts XLXI_22 (.I0(XLXN_112),  
                                 .I1(XLXN_112),  
                                 .I2(XLXN_112),  
                                 .I3(XLXN_112),  
                                 .I4(XLXN_112),  
                                 .I5(XLXN_112),  
                                 .I6(XLXN_112),  
                                 .I7(XLXN_112),  
                                 .O(XLXN_144)); 
   // synthesis attribute HU_SET of XLXI_22 is "XLXI_22_1" 
   AND9_MXILINX_fanouts XLXI_23 (.I0(XLXN_152),  
                                 .I1(XLXN_152),  
                                 .I2(XLXN_152),  
                                 .I3(XLXN_152),  
                                 .I4(XLXN_152),  
                                 .I5(XLXN_152),  
                                 .I6(XLXN_152),  
                                 .I7(XLXN_152),  
                                 .I8(XLXN_152),  
                                 .O(XLXN_483)); 
   // synthesis attribute HU_SET of XLXI_23 is "XLXI_23_2" 
   AND9_MXILINX_fanouts XLXI_27 (.I0(XLXN_11),  
                                 .I1(XLXN_11),  
                                 .I2(XLXN_11),  
                                 .I3(XLXN_11),  
                                 .I4(XLXN_11),  
                                 .I5(XLXN_11),  
                                 .I6(XLXN_11),  
                                 .I7(XLXN_11),  
                                 .I8(XLXN_11),  
                                 .O(XLXN_484)); 
   // synthesis attribute HU_SET of XLXI_27 is "XLXI_27_4" 
   AND9_MXILINX_fanouts XLXI_28 (.I0(XLXN_258),  
                                 .I1(XLXN_258),  
                                 .I2(XLXN_258),  
                                 .I3(XLXN_258),  
                                 .I4(XLXN_258),  
                                 .I5(XLXN_258),  
                                 .I6(XLXN_258),  
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                                 .I7(XLXN_258),  
                                 .I8(XLXN_258),  
                                 .O(XLXN_486)); 
   // synthesis attribute HU_SET of XLXI_28 is "XLXI_28_5" 
   AND7_MXILINX_fanouts XLXI_29 (.I0(XLXN_212),  
                                 .I1(XLXN_212),  
                                 .I2(XLXN_212),  
                                 .I3(XLXN_212),  
                                 .I4(XLXN_212),  
                                 .I5(XLXN_212),  
                                 .I6(XLXN_212),  
                                 .O(XLXN_485)); 
   // synthesis attribute HU_SET of XLXI_29 is "XLXI_29_6" 
   AND8_MXILINX_fanouts XLXI_30 (.I0(XLXN_212),  
                                 .I1(XLXN_212),  
                                 .I2(XLXN_212),  
                                 .I3(XLXN_212),  
                                 .I4(XLXN_212),  
                                 .I5(XLXN_212),  
                                 .I6(XLXN_212),  
                                 .I7(XLXN_212),  
                                 .O(XLXN_258)); 
   // synthesis attribute HU_SET of XLXI_30 is "XLXI_30_7" 
   AND8_MXILINX_fanouts XLXI_39 (.I0(XLXN_258),  
                                 .I1(XLXN_258),  
                                 .I2(XLXN_258),  
                                 .I3(XLXN_258),  
                                 .I4(XLXN_258),  
                                 .I5(XLXN_258),  
                                 .I6(XLXN_258),  
                                 .I7(XLXN_258),  
                                 .O(XLXN_249)); 
   // synthesis attribute HU_SET of XLXI_39 is "XLXI_39_8" 
   AND9_MXILINX_fanouts XLXI_42 (.I0(XLXN_249),  
                                 .I1(XLXN_249),  
                                 .I2(XLXN_249),  
                                 .I3(XLXN_249),  
                                 .I4(XLXN_249),  
                                 .I5(XLXN_249),  
                                 .I6(XLXN_249),  
                                 .I7(XLXN_249),  
                                 .I8(XLXN_249),  
                                 .O(XLXN_487)); 
   // synthesis attribute HU_SET of XLXI_42 is "XLXI_42_10" 
   AND16_MXILINX_fanouts XLXI_60 (.I0(XLXN_517),  
                                  .I1(XLXN_517),  
                                  .I2(XLXN_517),  
                                  .I3(XLXN_517),  
                                  .I4(XLXN_517),  
                                  .I5(XLXN_517),  
                                  .I6(XLXN_517),  
                                  .I7(XLXN_517),  
                                  .I8(XLXN_517),  
                                  .I9(XLXN_517),  
                                  .I10(XLXN_517),  
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                                  .I11(XLXN_517),  
                                  .I12(XLXN_517),  
                                  .I13(XLXN_517),  
                                  .I14(XLXN_517),  
                                  .I15(XLXN_517),  
                                  .O(XLXN_521)); 
   // synthesis attribute HU_SET of XLXI_60 is "XLXI_60_11" 
   AND16_MXILINX_fanouts XLXI_62 (.I0(XLXN_503),  
                                  .I1(XLXN_503),  
                                  .I2(XLXN_503),  
                                  .I3(XLXN_503),  
                                  .I4(XLXN_503),  
                                  .I5(XLXN_503),  
                                  .I6(XLXN_503),  
                                  .I7(XLXN_503),  
                                  .I8(XLXN_503),  
                                  .I9(XLXN_503),  
                                  .I10(XLXN_503),  
                                  .I11(XLXN_503),  
                                  .I12(XLXN_503),  
                                  .I13(XLXN_503),  
                                  .I14(XLXN_503),  
                                  .I15(XLXN_503),  
                                  .O(XLXN_522)); 
   // synthesis attribute HU_SET of XLXI_62 is "XLXI_62_16" 
   AND16_MXILINX_fanouts XLXI_63 (.I0(XLXN_506),  
                                  .I1(XLXN_506),  
                                  .I2(XLXN_506),  
                                  .I3(XLXN_506),  
                                  .I4(XLXN_506),  
                                  .I5(XLXN_506),  
                                  .I6(XLXN_506),  
                                  .I7(XLXN_506),  
                                  .I8(XLXN_506),  
                                  .I9(XLXN_506),  
                                  .I10(XLXN_506),  
                                  .I11(XLXN_506),  
                                  .I12(XLXN_506),  
                                  .I13(XLXN_506),  
                                  .I14(XLXN_506),  
                                  .I15(XLXN_506),  
                                  .O(XLXN_523)); 
   // synthesis attribute HU_SET of XLXI_63 is "XLXI_63_18" 
   AND16_MXILINX_fanouts XLXI_64 (.I0(XLXN_509),  
                                  .I1(XLXN_509),  
                                  .I2(XLXN_509),  
                                  .I3(XLXN_509),  
                                  .I4(XLXN_509),  
                                  .I5(XLXN_509),  
                                  .I6(XLXN_509),  
                                  .I7(XLXN_509),  
                                  .I8(XLXN_509),  
                                  .I9(XLXN_509),  
                                  .I10(XLXN_509),  
                                  .I11(XLXN_509),  



 160

                                  .I12(XLXN_509),  
                                  .I13(XLXN_509),  
                                  .I14(XLXN_509),  
                                  .I15(XLXN_509),  
                                  .O(XLXN_524)); 
   // synthesis attribute HU_SET of XLXI_64 is "XLXI_64_12" 
   AND16_MXILINX_fanouts XLXI_65 (.I0(XLXN_509),  
                                  .I1(XLXN_509),  
                                  .I2(XLXN_509),  
                                  .I3(XLXN_509),  
                                  .I4(XLXN_509),  
                                  .I5(XLXN_509),  
                                  .I6(XLXN_509),  
                                  .I7(XLXN_509),  
                                  .I8(XLXN_509),  
                                  .I9(XLXN_509),  
                                  .I10(XLXN_509),  
                                  .I11(XLXN_509),  
                                  .I12(XLXN_509),  
                                  .I13(XLXN_509),  
                                  .I14(XLXN_509),  
                                  .I15(XLXN_509),  
                                  .O(XLXN_525)); 
   // synthesis attribute HU_SET of XLXI_65 is "XLXI_65_13" 
   AND16_MXILINX_fanouts XLXI_66 (.I0(XLXN_509),  
                                  .I1(XLXN_509),  
                                  .I2(XLXN_509),  
                                  .I3(XLXN_509),  
                                  .I4(XLXN_509),  
                                  .I5(XLXN_509),  
                                  .I6(XLXN_509),  
                                  .I7(XLXN_509),  
                                  .I8(XLXN_509),  
                                  .I9(XLXN_509),  
                                  .I10(XLXN_509),  
                                  .I11(XLXN_509),  
                                  .I12(XLXN_509),  
                                  .I13(XLXN_509),  
                                  .I14(XLXN_509),  
                                  .I15(XLXN_509),  
                                  .O(XLXN_603)); 
   // synthesis attribute HU_SET of XLXI_66 is "XLXI_66_14" 
   AND12_MXILINX_fanouts XLXI_67 (.I0(XLXN_520),  
                                  .I1(XLXN_520),  
                                  .I2(XLXN_517),  
                                  .I3(XLXN_517),  
                                  .I4(XLXN_517),  
                                  .I5(XLXN_517),  
                                  .I6(XLXN_517),  
                                  .I7(XLXN_517),  
                                  .I8(XLXN_517),  
                                  .I9(XLXN_517),  
                                  .I10(XLXN_517),  
                                  .I11(XLXN_517),  
                                  .O(XLXN_503)); 
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   // synthesis attribute HU_SET of XLXI_67 is "XLXI_67_15" 
   AND12_MXILINX_fanouts XLXI_69 (.I0(XLXN_537),  
                                  .I1(XLXN_503),  
                                  .I2(XLXN_503),  
                                  .I3(XLXN_503),  
                                  .I4(XLXN_503),  
                                  .I5(XLXN_503),  
                                  .I6(XLXN_503),  
                                  .I7(XLXN_503),  
                                  .I8(XLXN_503),  
                                  .I9(XLXN_503),  
                                  .I10(XLXN_503),  
                                  .I11(XLXN_503),  
                                  .O(XLXN_506)); 
   // synthesis attribute HU_SET of XLXI_69 is "XLXI_69_17" 
   AND12_MXILINX_fanouts XLXI_72 (.I0(XLXN_506),  
                                  .I1(XLXN_506),  
                                  .I2(XLXN_506),  
                                  .I3(XLXN_506),  
                                  .I4(XLXN_506),  
                                  .I5(XLXN_506),  
                                  .I6(XLXN_506),  
                                  .I7(XLXN_506),  
                                  .I8(XLXN_506),  
                                  .I9(XLXN_506),  
                                  .I10(XLXN_506),  
                                  .I11(XLXN_506),  
                                  .O(XLXN_509)); 
   // synthesis attribute HU_SET of XLXI_72 is "XLXI_72_19" 
endmodule 

 

FILE: bram2.vf 

//////////////////////////////////////////////////////////////////////////////// 
// Copyright (c) 1995-2007 Xilinx, Inc.  All rights reserved. 
//////////////////////////////////////////////////////////////////////////////// 
//   ____  ____  
//  /   /\/   /  
// /___/  \  /    Vendor: Xilinx  
// \   \   \/     Version : 9.2.02i 
//  \   \         Application : sch2verilog 
//  /   /         Filename : bram2.vf 
// /___/   /\     Timestamp : 11/11/2007 12:03:10 
// \   \  /  \  
//  \___\/\___\  
// 
//Command: C:\Xilinx92i\bin\nt\sch2verilog.exe -intstyle ise -family virtex2 -w 
"C:/Documents and Settings/HP_Owner/My 
Documents/schoolStuff/Thesis/VHDL/ThesisVHDLSims/bram2.sch" bram2.vf 
//Design Name: bram2 
//Device: virtex2 
//Purpose: 
//    This verilog netlist is translated from an ECS schematic.It can be  
//    synthesized and simulated, but it should not be modified.  
// 
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`timescale 1ns / 1ps 
 
module M2_1_MXILINX_bram2(D0,  
                          D1,  
                          S0,  
                          O); 
 
    input D0; 
    input D1; 
    input S0; 
   output O; 
    
   wire M0; 
   wire M1; 
    
   AND2B1 I_36_7 (.I0(S0),  
                  .I1(D0),  
                  .O(M0)); 
   OR2 I_36_8 (.I0(M1),  
               .I1(M0),  
               .O(O)); 
   AND2 I_36_9 (.I0(D1),  
                .I1(S0),  
                .O(M1)); 
endmodule 
`timescale 1ns / 1ps 
 
module bram2(Add,  
             CLK,  
             D_out); 
 
    input [14:0] Add; 
    input CLK; 
   output D_out; 
    
   wire [0:0] XLXN_3; 
   wire XLXN_6; 
   wire XLXN_8; 
   wire XLXN_9; 
   wire XLXN_11; 
   wire [0:0] XLXN_15; 
   wire [0:0] XLXN_16; 
   wire [0:0] XLXN_17; 
    
   RAMB16_S1 XLXI_3 (.ADDR(Add[13:0]),  
                     .CLK(CLK),  
                     .DI(XLXN_3[0]),  
                     .EN(XLXN_6),  
                     .SSR(XLXN_11),  
                     .WE(XLXN_11),  
                     .DO(XLXN_16[0])); 
   defparam XLXI_3.INIT = 1'h0; 
   defparam XLXI_3.INIT_00 =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_3.INIT_01 =  
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         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_3.INIT_02 =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_3.INIT_03 =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
 
---------- OMITTED PARTS of ROM initialization FOR BREVITY ----------------- 
 
   defparam XLXI_3.INIT_39 =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_3.INIT_3A =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_3.INIT_3B =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_3.INIT_3C =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_3.INIT_3D =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_3.INIT_3E =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_3.INIT_3F =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_3.SRVAL = 1'h0; 
   defparam XLXI_3.WRITE_MODE = "WRITE_FIRST"; 
   RAMB16_S1 XLXI_4 (.ADDR(Add[13:0]),  
                     .CLK(CLK),  
                     .DI(XLXN_17[0]),  
                     .EN(XLXN_8),  
                     .SSR(XLXN_9),  
                     .WE(XLXN_9),  
                     .DO(XLXN_15[0])); 
   defparam XLXI_4.INIT = 1'h0; 
   defparam XLXI_4.INIT_00 =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_4.INIT_01 =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_4.INIT_02 =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_4.INIT_03 =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_4.INIT_04 =  
 
---------- OMITTED PARTS of ROM initialization FOR BREVITY ----------------- 
 
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_4.INIT_3F =  
         256'h0000000000000000000000000000000000000000000000000000000000000000; 
   defparam XLXI_4.SRVAL = 1'h0; 
   defparam XLXI_4.WRITE_MODE = "WRITE_FIRST"; 
   M2_1_MXILINX_bram2 XLXI_5 (.D0(XLXN_15[0]),  
                              .D1(XLXN_16[0]),  
                              .S0(Add[14]),  
                              .O(D_out)); 
   // synthesis attribute HU_SET of XLXI_5 is "XLXI_5_0" 
   GND XLXI_6 (.G(XLXN_11)); 
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   GND XLXI_7 (.G(XLXN_9)); 
   GND XLXI_8 (.G(XLXN_17[0])); 
   GND XLXI_9 (.G(XLXN_3[0])); 
   VCC XLXI_10 (.P(XLXN_6)); 
   VCC XLXI_11 (.P(XLXN_8)); 
endmodule 

 

FILE: ramtester.vf 

//////////////////////////////////////////////////////////////////////////////// 
// Copyright (c) 1995-2007 Xilinx, Inc.  All rights reserved. 
//////////////////////////////////////////////////////////////////////////////// 
//   ____  ____  
//  /   /\/   /  
// /___/  \  /    Vendor: Xilinx  
// \   \   \/     Version : 9.2.02i 
//  \   \         Application : sch2verilog 
//  /   /         Filename : ramtester.vf 
// /___/   /\     Timestamp : 11/11/2007 12:03:07 
// \   \  /  \  
//  \___\/\___\  
// 
//Command: C:\Xilinx92i\bin\nt\sch2verilog.exe -intstyle ise -family virtex2 -w 
"C:/Documents and Settings/HP_Owner/My 
Documents/schoolStuff/Thesis/VHDL/ThesisVHDLSims/ramtester.sch" ramtester.vf 
//Design Name: ramtester 
//Device: virtex2 
//Purpose: 
//    This verilog netlist is translated from an ECS schematic.It can be  
//    synthesized and simulated, but it should not be modified.  
// 
`timescale 1ns / 1ps 
 
module ramtester(XLXN_1,  
                 XLXN_2,  
                 XLXN_3,  
                 XLXN_4,  
                 XLXN_5,  
                 XLXN_20,  
                 XLXN_21,  
                 XLXN_22,  
                 XLXN_25,  
                 XLXN_26,  
                 XLXN_23); 
 
    input XLXN_1; 
    input XLXN_2; 
    input XLXN_3; 
    input XLXN_4; 
    input XLXN_5; 
    input XLXN_20; 
    input XLXN_21; 
    input XLXN_22; 
    input XLXN_25; 
    input XLXN_26; 
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   output XLXN_23; 
    
    
   RAM128X1S XLXI_4 (.A0(XLXN_20),  
                     .A1(XLXN_1),  
                     .A2(XLXN_2),  
                     .A3(XLXN_3),  
                     .A4(XLXN_4),  
                     .A5(XLXN_5),  
                     .A6(XLXN_22),  
                     .D(XLXN_26),  
                     .WCLK(XLXN_21),  
                     .WE(XLXN_25),  
                     .O(XLXN_23)); 
   defparam XLXI_4.INIT = 128'h00000000000000000000000000000000; 
endmodule 

 

2. Synthesis Reports 

The synthesis reports were generated from the VHDL files above.  They were 

generated for the Xilinx Virtex-II XC26000 with package ff1517 and with a speed grade 

of -4.  These reports were used to gather timing and hardware utilization parameters.  

The key parts that were analyzed were the number of LUTs and Slices and the worst case 

signal propagation path.  The delay due the IOBs was subtracted from the total delay at 

the end of each synthesis report so that multiple components can be cascaded inside the 

FPGA.  Since the VHDL files were modified without changing the names, often the name 

of the synthesis report does not reflect the actual size of the device.  For example, 

adder_64.syr, shown below is the synthesis report for a 129-bit RCA.   

Parts of the reports have been omitted in this appendix for the sake of brevity.  

The first synthesis report (for adder_64.syr) shows almost everything that is included in a 

synthesis report.  The following synthesis reports show only information that is pertinent 

to this thesis. 

 

FILE: adder_64.syr 

Release 6.3.03i - xst G.38 
Copyright (c) 1995-2004 Xilinx, Inc.  All rights reserved. 
--> Parameter TMPDIR set to __projnav 
CPU : 0.00 / 0.51 s | Elapsed : 0.00 / 0.00 s 
  
--> Parameter xsthdpdir set to ./xst 
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CPU : 0.00 / 0.51 s | Elapsed : 0.00 / 0.00 s 
  
--> Reading design: adder_64.prj 
 
TABLE OF CONTENTS 
  1) Synthesis Options Summary 
  2) HDL Compilation 
  3) HDL Analysis 
  4) HDL Synthesis 
  5) Advanced HDL Synthesis 
     5.1) HDL Synthesis Report 
  6) Low Level Synthesis 
  7) Final Report 
     7.1) Device utilization summary 
     7.2) TIMING REPORT 
 
 
========================================================================= 
*                      Synthesis Options Summary                        * 
========================================================================= 
---- Source Parameters 
Input File Name                    : adder_64.prj 
Input Format                       : mixed 
Ignore Synthesis Constraint File   : NO 
Verilog Include Directory          :  
 
---- Target Parameters 
Output File Name                   : adder_64 
Output Format                      : NGC 
Target Device                      : xc2v6000-4-ff1517 
 
---- Source Options 
Top Module Name                    : adder_64 
Automatic FSM Extraction           : YES 
FSM Encoding Algorithm             : Auto 
FSM Style                          : lut 
RAM Extraction                     : Yes 
RAM Style                          : Auto 
ROM Extraction                     : Yes 
ROM Style                          : Auto 
Mux Extraction                     : YES 
Mux Style                          : Auto 
Decoder Extraction                 : YES 
Priority Encoder Extraction        : YES 
Shift Register Extraction          : YES 
Logical Shifter Extraction         : YES 
XOR Collapsing                     : YES 
Resource Sharing                   : YES 
Multiplier Style                   : auto 
Automatic Register Balancing       : No 
 
---- Target Options 
Add IO Buffers                     : YES 
Global Maximum Fanout              : 500 
Add Generic Clock Buffer(BUFG)     : 16 
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Register Duplication               : YES 
Equivalent register Removal        : YES 
Slice Packing                      : YES 
Pack IO Registers into IOBs        : auto 
 
---- General Options 
Optimization Goal                  : Speed 
Optimization Effort                : 1 
Keep Hierarchy                     : NO 
Global Optimization                : AllClockNets 
RTL Output                         : Yes 
Write Timing Constraints           : NO 
Hierarchy Separator                : _ 
Bus Delimiter                      : <> 
Case Specifier                     : maintain 
Slice Utilization Ratio            : 100 
Slice Utilization Ratio Delta      : 5 
 
---- Other Options 
lso                                : adder_64.lso 
Read Cores                         : YES 
cross_clock_analysis               : NO 
verilog2001                        : YES 
Optimize Instantiated Primitives   : NO 
tristate2logic                     : No 
 
========================================================================= 
 
 
========================================================================= 
*                          HDL Compilation                              * 
========================================================================= 
Compiling vhdl file H:/Thesis/VHDL/ThesisVHDLSims/Adder_64.vhd in Library work. 
Architecture behavioral of Entity adder_64 is up to date. 
 
========================================================================= 
*                            HDL Analysis                               * 
========================================================================= 
Analyzing Entity <adder_64> (Architecture <behavioral>). 
Entity <adder_64> analyzed. Unit <adder_64> generated. 
 
 
========================================================================= 
*                           HDL Synthesis                               * 
========================================================================= 
 
Synthesizing Unit <adder_64>. 
    Related source file is H:/Thesis/VHDL/ThesisVHDLSims/Adder_64.vhd. 
    Found 129-bit adder for signal <sum>. 
    Summary: 
 inferred   1 Adder/Subtracter(s). 
Unit <adder_64> synthesized. 
 
 
========================================================================= 



 168

*                       Advanced HDL Synthesis                          * 
========================================================================= 
 
Advanced RAM inference ... 
Advanced multiplier inference ... 
Advanced Registered AddSub inference ... 
Dynamic shift register inference ... 
 
========================================================================= 
HDL Synthesis Report 
 
Macro Statistics 
# Adders/Subtractors               : 1 
 129-bit adder                     : 1 
 
========================================================================= 
 
========================================================================= 
*                         Low Level Synthesis                           * 
========================================================================= 
 
Optimizing unit <adder_64> ... 
Loading device for application Xst from file '2v6000.nph' in environment 
C:/Xilinx. 
 
Mapping all equations... 
Building and optimizing final netlist ... 
Found area constraint ratio of 100 (+ 5) on block adder_64, actual ratio is 0. 
 
========================================================================= 
*                            Final Report                               * 
========================================================================= 
Final Results 
RTL Top Level Output File Name     : adder_64.ngr 
Top Level Output File Name         : adder_64 
Output Format                      : NGC 
Optimization Goal                  : Speed 
Keep Hierarchy                     : NO 
 
Design Statistics 
# IOs                              : 387 
 
Macro Statistics : 
# Adders/Subtractors               : 1 
#      129-bit adder               : 1 
 
Cell Usage : 
# BELS                             : 386 
#      GND                         : 1 
#      LUT2                        : 129 
#      MUXCY                       : 128 
#      XORCY                       : 128 
# IO Buffers                       : 387 
#      IBUF                        : 258 
#      OBUF                        : 129 
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========================================================================= 
 
Device utilization summary: 
--------------------------- 
 
Selected Device : 2v6000ff1517-4  
 
 Number of Slices:                      65  out of  33792     0%   
 Number of 4 input LUTs:               129  out of  67584     0%   
 Number of bonded IOBs:                387  out of   1104    35%   
 
 
========================================================================= 
TIMING REPORT 
 
NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE. 
      FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT 
      GENERATED AFTER PLACE-and-ROUTE. 
 
Clock Information: 
------------------ 
No clock signals found in this design 
 
Timing Summary: 
--------------- 
Speed Grade: -4 
 
   Minimum period: No path found 
   Minimum input arrival time before clock: No path found 
   Maximum output required time after clock: No path found 
   Maximum combinational path delay: 14.963ns 
 
Timing Detail: 
-------------- 
All values displayed in nanoseconds (ns) 
 
------------------------------------------------------------------------- 
Timing constraint: Default path analysis 
Delay:               14.963ns (Levels of Logic = 132) 
  Source:            a<0> (PAD) 
  Destination:       sum<128> (PAD) 
 
  Data Path: a<0> to sum<128> 
                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 
    ----------------------------------------  ------------ 
     IBUF:I->O             1   0.825   0.517  a_0_IBUF (a_0_IBUF) 
     LUT2:I0->O            2   0.439   0.000  adder_64_sum<0>lut (sum_0_OBUF) 
     MUXCY:S->O            1   0.298   0.000  adder_64_sum<0>cy 
(adder_64_sum<0>_cyo) 
     MUXCY:CI->O           1   0.053   0.000  adder_64_sum<1>cy 
(adder_64_sum<1>_cyo) 
     MUXCY:CI->O           1   0.053   0.000  adder_64_sum<2>cy 
(adder_64_sum<2>_cyo) 
     MUXCY:CI->O           1   0.053   0.000  adder_64_sum<3>cy 
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(adder_64_sum<3>_cyo) 
     MUXCY:CI->O           1   0.053   0.000  adder_64_sum<4>cy  
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
(adder_64_sum<113>_cyo) 
     MUXCY:CI->O           1   0.053   0.000  adder_64_sum<118>cy 
(adder_64_sum<118>_cyo) 
     MUXCY:CI->O           1   0.053   0.000  adder_64_sum<119>cy 
(adder_64_sum<119>_cyo) 
     MUXCY:CI->O           1   0.053   0.000  adder_64_sum<120>cy 
(adder_64_sum<120>_cyo) 
     MUXCY:CI->O           1   0.053   0.000  adder_64_sum<121>cy 
(adder_64_sum<121>_cyo) 
     MUXCY:CI->O           1   0.053   0.000  adder_64_sum<122>cy 
(adder_64_sum<122>_cyo) 
     MUXCY:CI->O           1   0.053   0.000  adder_64_sum<123>cy 
(adder_64_sum<123>_cyo) 
     MUXCY:CI->O           1   0.053   0.000  adder_64_sum<124>cy 
(adder_64_sum<124>_cyo) 
     MUXCY:CI->O           1   0.053   0.000  adder_64_sum<125>cy 
(adder_64_sum<125>_cyo) 
     MUXCY:CI->O           1   0.053   0.000  adder_64_sum<126>cy 
(adder_64_sum<126>_cyo) 
     MUXCY:CI->O           0   0.053   0.000  adder_64_sum<127>cy 
(adder_64_sum<127>_cyo) 
     XORCY:CI->O           1   1.274   0.517  adder_64_sum<128>_xor 
(sum_128_OBUF) 
     OBUF:I->O                 4.361          sum_128_OBUF (sum<128>) 
    ---------------------------------------- 
    Total                     14.963ns (13.928ns logic, 1.035ns route) 
                                       (93.1% logic, 6.9% route) 
 
========================================================================= 
CPU : 18.95 / 19.98 s | Elapsed : 19.00 / 20.00 s 
  
-->  
 
Total memory usage is 144088 kilobytes 
 
 

 

FILE: fanouts.syr 

Release 6.3.03i - xst G.38 
Copyright (c) 1995-2004 Xilinx, Inc.  All rights reserved. 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
Input File Name                    : fanouts.prj 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
Cell Usage : 
# BELS                             : 125 
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#      AND2                        : 5 
#      AND3                        : 9 
#      AND4                        : 57 
#      GND                         : 19 
#      MUXCY                       : 7 
#      MUXCY_L                     : 21 
#      VCC                         : 7 
# IO Buffers                       : 16 
#      IBUF                        : 3 
#      OBUF                        : 13 
# Others                           : 68 
#      FMAP                        : 68 
========================================================================= 
 
Device utilization summary: 
--------------------------- 
 
Selected Device : 2v6000ff1517-4  
 
 Number of Slices:                      14  out of  33792     0%   
 Number of bonded IOBs:                 16  out of   1104     1%   
 
 
========================================================================= 
TIMING REPORT 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
  Data Path: XLXN_115 to XLXN_524 
                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 
    ----------------------------------------  ------------ 
     IBUF:I->O            10   0.825   0.885  XLXN_115_IBUF (XLXN_115_IBUF) 
     AND2:I1->O           11   0.439   0.909  XLXI_3 (XLXN_112) 
     AND3:I2->O           13   0.439   0.955  XLXI_4 (XLXN_152) 
     AND4:I3->O           15   0.439   0.989  XLXI_5 (XLXN_11) 
     begin scope: 'XLXI_7' 
     AND3:I2->O            1   0.439   0.517  I_36_69 (I35) 
     AND4:I3->O           15   0.439   0.989  I_36_85 (O) 
     end scope: 'XLXI_7' 
     begin scope: 'XLXI_30' 
     AND4:I3->O            1   0.439   0.517  I_36_127 (S1) 
     AND2:I1->O           17   0.439   1.012  I_36_142 (O) 
     end scope: 'XLXI_30' 
     begin scope: 'XLXI_39' 
     AND4:I3->O            1   0.439   0.517  I_36_127 (S1) 
     AND2:I1->O           25   0.439   1.069  I_36_142 (O) 
     end scope: 'XLXI_39' 
     begin scope: 'XLXI_17' 
     AND4:I3->O            1   0.439   0.000  I_36_110 (S0) 
     MUXCY_L:S->LO         1   0.298   0.000  I_36_2 (C0) 
     MUXCY_L:CI->LO        1   0.053   0.000  I_36_129 (C1) 
     MUXCY_L:CI->LO        1   0.053   0.000  I_36_147 (C2) 
     MUXCY:CI->O          26   0.942   1.072  I_36_165 (O) 
     end scope: 'XLXI_17' 
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     begin scope: 'XLXI_67' 
     AND4:I1->O            1   0.439   0.517  I_36_151 (S2) 
     AND3:I2->O           27   0.439   1.075  I_36_177 (O) 
     end scope: 'XLXI_67' 
     begin scope: 'XLXI_69' 
     AND4:I1->O            1   0.439   0.517  I_36_151 (S2) 
     AND3:I2->O           28   0.439   1.077  I_36_177 (O) 
     end scope: 'XLXI_69' 
     begin scope: 'XLXI_72' 
     AND4:I1->O            1   0.439   0.517  I_36_151 (S2) 
     AND3:I2->O           48   0.439   1.129  I_36_177 (O) 
     end scope: 'XLXI_72' 
     begin scope: 'XLXI_64' 
     AND4:I3->O            1   0.439   0.000  I_36_110 (S0) 
     MUXCY_L:S->LO         1   0.298   0.000  I_36_2 (C0) 
     MUXCY_L:CI->LO        1   0.053   0.000  I_36_129 (C1) 
     MUXCY_L:CI->LO        1   0.053   0.000  I_36_147 (C2) 
     MUXCY:CI->O           1   0.942   0.517  I_36_165 (O) 
     end scope: 'XLXI_64' 
     OBUF:I->O                 4.361          XLXN_524_OBUF (XLXN_524) 
    ---------------------------------------- 
    Total                     30.125ns (15.341ns logic, 14.784ns route) 
                                       (50.9% logic, 49.1% route) 
 
========================================================================= 
CPU : 6.50 / 7.51 s | Elapsed : 7.00 / 8.00 s 
 

 

FILE: BRAM2.syr 

Release 6.3.03i - xst G.38 
Copyright (c) 1995-2004 Xilinx, Inc.  All rights reserved. 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
Input File Name                    : bram2.prj 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
========================================================================= 
HDL Synthesis Report 
 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
========================================================================= 
*                            Final Report                               * 
========================================================================= 
Final Results 
RTL Top Level Output File Name     : bram2.ngr 
Top Level Output File Name         : bram2 
Output Format                      : NGC 
Optimization Goal                  : Speed 
Keep Hierarchy                     : NO 
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Design Statistics 
# IOs                              : 17 
 
Cell Usage : 
# BELS                             : 9 
#      AND2                        : 1 
#      AND2b1                      : 1 
#      GND                         : 4 
#      OR2                         : 1 
#      VCC                         : 2 
# RAMS                             : 2 
#      RAMB16_S1                   : 2 
# Clock Buffers                    : 1 
#      BUFGP                       : 1 
# IO Buffers                       : 16 
#      IBUF                        : 15 
#      OBUF                        : 1 
========================================================================= 
 
Device utilization summary: 
--------------------------- 
 
Selected Device : 2v6000ff1517-4  
 
 Number of bonded IOBs:                 16  out of   1104     1%   
 Number of BRAMs:                        2  out of    144     1%   
 Number of GCLKs:                        1  out of     16     6%   
 
 
========================================================================= 
TIMING REPORT 
 
NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE. 
      FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT 
      GENERATED AFTER PLACE-and-ROUTE. 
 
Clock Information: 
------------------ 
-----------------------------------+------------------------+-------+ 
Clock Signal                       | Clock buffer(FF name)  | Load  | 
-----------------------------------+------------------------+-------+ 
CLK                                | BUFGP                  | 2     | 
-----------------------------------+------------------------+-------+ 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
 
  Data Path: XLXI_3 to D_out 
                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 
    ----------------------------------------  ------------ 
     RAMB16_S1:CLK->DO0    1   2.599   0.517  XLXI_3 (XLXN_16) 
     begin scope: 'XLXI_5' 
     AND2:I0->O            1   0.439   0.517  I_36_9 (M1) 
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     OR2:I0->O             1   0.439   0.517  I_36_8 (O) 
     end scope: 'XLXI_5' 
     OBUF:I->O                 4.361          D_out_OBUF (D_out) 
    ---------------------------------------- 
    Total                      9.391ns (7.838ns logic, 1.552ns route) 
                                       (83.5% logic, 16.5% route) 
 
------------------------------------------------------------------------- 
Timing constraint: Default path analysis 
Delay:               7.800ns (Levels of Logic = 5) 
  Source:            Add<14> (PAD) 
  Destination:       D_out (PAD) 
 
  Data Path: Add<14> to D_out 
                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 
    ----------------------------------------  ------------ 
     IBUF:I->O             2   0.825   0.701  Add_14_IBUF (Add_14_IBUF) 
     begin scope: 'XLXI_5' 
     AND2b1:I0->O          1   0.439   0.517  I_36_7 (M0) 
     OR2:I1->O             1   0.439   0.517  I_36_8 (O) 
     end scope: 'XLXI_5' 
     OBUF:I->O                 4.361          D_out_OBUF (D_out) 
    ---------------------------------------- 
    Total                      7.800ns (6.064ns logic, 1.736ns route) 
                                       (77.7% logic, 22.3% route) 
 
========================================================================= 
CPU : 7.44 / 8.47 s | Elapsed : 7.00 / 8.00 s 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 

 

FILE: multiplier.syr 

Release 6.3.03i - xst G.38 
Copyright (c) 1995-2004 Xilinx, Inc.  All rights reserved. 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
Input File Name                    : multiplier.prj 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
========================================================================= 
*                            Final Report                               * 
========================================================================= 
Final Results 
RTL Top Level Output File Name     : multiplier.ngr 
Top Level Output File Name         : multiplier 
Output Format                      : NGC 
Optimization Goal                  : Speed 
Keep Hierarchy                     : NO 
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Design Statistics 
# IOs                              : 68 
 
Macro Statistics : 
# Multipliers                      : 1 
#      17x17-bit multiplier        : 1 
 
Cell Usage : 
# BELS                             : 1 
#      GND                         : 1 
# IO Buffers                       : 68 
#      IBUF                        : 34 
#      OBUF                        : 34 
# MULTs                            : 1 
#      MULT18X18                   : 1 
========================================================================= 
 
Device utilization summary: 
--------------------------- 
 
Selected Device : 2v6000ff1517-4  
 
 Number of bonded IOBs:                 68  out of   1104     6%   
 Number of MULT18X18s:                   1  out of    144     0%   
 
 
========================================================================= 
TIMING REPORT 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
All values displayed in nanoseconds (ns) 
 
------------------------------------------------------------------------- 
Timing constraint: Default path analysis 
Delay:               16.163ns (Levels of Logic = 3) 
  Source:            a<0> (PAD) 
  Destination:       sum<33> (PAD) 
 
  Data Path: a<0> to sum<33> 
                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 
    ----------------------------------------  ------------ 
     IBUF:I->O             1   0.825   0.517  a_0_IBUF (a_0_IBUF) 
     MULT18X18:A0->P33     1   9.942   0.517  Mmult_sum_inst_mult_0 
(sum_33_OBUF) 
     OBUF:I->O                 4.361          sum_33_OBUF (sum<33>) 
    ---------------------------------------- 
    Total                     16.163ns (15.128ns logic, 1.035ns route) 
                                       (93.6% logic, 6.4% route) 
 
========================================================================= 
CPU : 4.75 / 5.80 s | Elapsed : 5.00 / 6.00 s 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
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FILE: mux128to1.syr 

Release 6.3.03i - xst G.38 
Copyright (c) 1995-2004 Xilinx, Inc.  All rights reserved. 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
Input File Name                    : mux128to1.prj 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
========================================================================= 
*                            Final Report                               * 
========================================================================= 
Final Results 
RTL Top Level Output File Name     : mux128to1.ngr 
Top Level Output File Name         : mux128to1 
Output Format                      : NGC 
Optimization Goal                  : Speed 
Keep Hierarchy                     : NO 
 
Design Statistics 
# IOs                              : 137 
 
Cell Usage : 
# BELS                             : 349 
#      AND2                        : 64 
#      AND2b1                      : 64 
#      AND3                        : 14 
#      AND3b1                      : 14 
#      LUT1                        : 66 
#      MUXF5                       : 1 
#      MUXF5_L                     : 32 
#      MUXF6                       : 16 
#      OR2                         : 78 
# IO Buffers                       : 137 
#      IBUF                        : 136 
#      OBUF                        : 1 
========================================================================= 
 
Device utilization summary: 
--------------------------- 
 
Selected Device : 2v6000ff1517-4  
 
 Number of Slices:                      33  out of  33792     0%   
 Number of 4 input LUTs:                66  out of  67584     0%   
 Number of bonded IOBs:                137  out of   1104    12%   
 
 
========================================================================= 
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TIMING REPORT 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
Timing Detail: 
-------------- 
All values displayed in nanoseconds (ns) 
 
------------------------------------------------------------------------- 
Timing constraint: Default path analysis 
Delay:               17.386ns (Levels of Logic = 21) 
  Source:            Sel<0> (PAD) 
  Destination:       XLXN_20 (PAD) 
 
  Data Path: Sel<0> to XLXN_20 
                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 
    ----------------------------------------  ------------ 
     IBUF:I->O           128   0.825   1.316  Sel_0_IBUF (Sel_0_IBUF) 
     begin scope: 'XLXI_3_XLXI_2' 
     begin scope: 'I_MAB' 
     AND2b1:I0->O          1   0.439   0.517  I_36_7 (M0) 
     OR2:I1->O             1   0.439   0.517  I_36_8 (O) 
     end scope: 'I_MAB' 
     LUT1:I0->O            1   0.439   0.000  MAB_rt (MAB_rt) 
     MUXF5_L:I1->LO        1   0.436   0.000  I_M8B (M8B) 
     MUXF6:I0->O           1   0.447   0.517  I_M8F (MBF) 
     begin scope: 'I_O' 
     AND3:I0->O            1   0.439   0.517  I_36_30 (M1) 
     OR2:I0->O             1   0.439   0.517  I_36_38 (O) 
     end scope: 'I_O' 
     end scope: 'XLXI_3_XLXI_2' 
     begin scope: 'XLXI_3_XLXI_4' 
     AND3:I0->O            1   0.439   0.517  I_36_30 (M1) 
     OR2:I0->O             1   0.439   0.517  I_36_38 (O) 
     end scope: 'XLXI_3_XLXI_4' 
     begin scope: 'XLXI_6' 
     begin scope: 'I_M01' 
     AND3:I0->O            1   0.439   0.517  I_36_30 (M1) 
     OR2:I0->O             1   0.439   0.517  I_36_38 (O) 
     end scope: 'I_M01' 
     LUT1:I0->O            1   0.439   0.000  M01_rt (M01_rt) 
     MUXF5:I0->O           1   0.436   0.517  I_O (O) 
     end scope: 'XLXI_6' 
     OBUF:I->O                 4.361          XLXN_20_OBUF (XLXN_20) 
    ---------------------------------------- 
    Total                     17.386ns (10.895ns logic, 6.491ns route) 
                                       (62.7% logic, 37.3% route) 
 
========================================================================= 
CPU : 7.42 / 8.44 s | Elapsed : 7.00 / 8.00 s 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
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FILE: ramtester.syr 

Release 6.3.03i - xst G.38 
Copyright (c) 1995-2004 Xilinx, Inc.  All rights reserved. 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
Input File Name                    : ramtester.prj 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
========================================================================= 
*                            Final Report                               * 
========================================================================= 
Final Results 
RTL Top Level Output File Name     : ramtester.ngr 
Top Level Output File Name         : ramtester 
Output Format                      : NGC 
Optimization Goal                  : Speed 
Keep Hierarchy                     : NO 
 
Design Statistics 
# IOs                              : 11 
 
Cell Usage : 
# RAMS                             : 1 
#      RAM128X1S                   : 1 
# Clock Buffers                    : 1 
#      BUFGP                       : 1 
# IO Buffers                       : 10 
#      IBUF                        : 9 
#      OBUF                        : 1 
========================================================================= 
 
Device utilization summary: 
--------------------------- 
 
Selected Device : 2v6000ff1517-4  
 
 Number of Slices:                       4  out of  33792     0%   
 Number of bonded IOBs:                 10  out of   1104     0%   
 Number of GCLKs:                        1  out of     16     6%   
 
 
========================================================================= 
TIMING REPORT 
 
NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE. 
      FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT 
      GENERATED AFTER PLACE-and-ROUTE. 
 
Clock Information: 
------------------ 
-----------------------------------+------------------------+-------+ 
Clock Signal                       | Clock buffer(FF name)  | Load  | 
-----------------------------------+------------------------+-------+ 



 179

XLXN_21                            | BUFGP                  | 1     | 
-----------------------------------+------------------------+-------+ 
 
Timing Summary: 
 
------------ PARTS OMITTED FOR BREVITY ---------------------- 
 
  Data Path: XLXN_26 to XLXI_4 
                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 
    ----------------------------------------  ------------ 
     IBUF:I->O             1   0.825   0.517  XLXN_26_IBUF (XLXN_26_IBUF) 
     RAM128X1S:D               0.727          XLXI_4 
    ---------------------------------------- 
    Total                      2.069ns (1.552ns logic, 0.517ns route) 
                                       (75.0% logic, 25.0% route) 
 
------------------------------------------------------------------------- 
Timing constraint: Default OFFSET OUT AFTER for Clock 'XLXN_21' 
Offset:              7.682ns (Levels of Logic = 1) 
  Source:            XLXI_4 (RAM) 
  Destination:       XLXN_23 (PAD) 
  Source Clock:      XLXN_21 rising 
 
  Data Path: XLXI_4 to XLXN_23 
                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 
    ----------------------------------------  ------------ 
     RAM128X1S:WCLK->O     1   2.804   0.517  XLXI_4 (XLXN_23_OBUF) 
     OBUF:I->O                 4.361          XLXN_23_OBUF (XLXN_23) 
    ---------------------------------------- 
    Total                      7.682ns (7.165ns logic, 0.517ns route) 
                                       (93.3% logic, 6.7% route) 
 
------------------------------------------------------------------------- 
Timing constraint: Default path analysis 
Delay:               8.583ns (Levels of Logic = 3) 
  Source:            XLXN_20 (PAD) 
  Destination:       XLXN_23 (PAD) 
 
  Data Path: XLXN_20 to XLXN_23 
                                Gate     Net 
    Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 
    ----------------------------------------  ------------ 
     IBUF:I->O            16   0.825   1.000  XLXN_20_IBUF (XLXN_20_IBUF) 
     RAM128X1S:A0->O       1   1.879   0.517  XLXI_4 (XLXN_23_OBUF) 
     OBUF:I->O                 4.361          XLXN_23_OBUF (XLXN_23) 
    ---------------------------------------- 
    Total                      8.583ns (7.065ns logic, 1.518ns route) 
                                       (82.3% logic, 17.7% route) 
 
========================================================================= 
CPU : 5.50 / 6.51 s | Elapsed : 6.00 / 7.00 s 
  
------------ PARTS OMITTED FOR BREVITY ---------------------- 
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B.2 COLLECTED DATA TEXT FILES 

The following data has been collected from synthesis reports and placed into each 

text file.  For each value of n, a circuit was synthesized. 

 

NetDelay.txt MuxDelayWithNet.txt AdderDelayWithNet.txt MultDelayWithNet.txt MultSlices.txt 

n   Delay (ns) n    Delay (ns) n Delay (ns) n   Delay (ns) n   Slices 

1   0.517 
2   0.701 
3   0.725 
4   0.747 
5   0.771 
6   0.794 
7   0.817 
8   0.84 
9   0.863 
10  0.885 
11  0.909 
12  0.931 
13  0.955 
15  0.989 
16  1 
17  1.012 
18  1.024 
19  1.035 
20  1.041 
21  1.046 
22  1.052 
23  1.058 
24  1.064 
25  1.069 
26  1.072 
27  1.075 
28  1.077 
32  1.088 
48  1.129 
63  1.168 
64  1.171 
65  1.173 
79  1.209 
80  1.212 
81  1.215 
127 1.316 
128 1.316 
129 1.316 
 

 

2   0.517 
3   4.0527 
4   4.0527 
5   4.5917 
7   4.5917 
8   4.5917 
9   6.6657 
15  6.6657 
16  6.6657 
17  8.6657 
31  8.6657 
32  8.6657 
33  10.6617 
63  10.6617 
64  10.6617 
65  12.1997 
127 12.1997 
128 12.1997 
 

 

1 1.474 
2 1.658 
3 2.638 
4 3.617 
5 3.205 
6 3.258 
7 3.311 
8 3.364 
9 3.417 
10 3.47 
11 3.523 
12 3.576 
13 3.629 
14 3.682 
15 3.735 
16 3.788 
20 4 
23 4.159 
24 4.212 
25 4.265 
28 4.424 
32 4.636 
33 4.689 
64 6.332 
128 9.724 
129 9.777 

2   4.766 
4   5.595 
6   6.423 
8   7.251 
12  8.906 
16  10.562 
17  10.977 
18  16.218 
19  16.424 
20  16.43 
20  16.43 
21  16.536 
24  16.854 
32  17.702 
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B.3 ESTIMATION OF MISSING DATAPOINTS 

The following plots show how fillLin estimates missing the data points in the five 

sets of collected data points.  The values returned from fillLin are used in HUandDelay to 

estimate component complexity and delay.   
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APPENDIX C. COMMONLY USED VARIABLES 

C.1 VARIABLE DEFINITIONS  

The following is a list of the variables used in this thesis and their descriptions. 

Variable Definition(s) How determined 

ε  Maximum allowable error Defined by system, here 12 nε − −=  

minσ  Minimum segment width 
min ( ) *

4
( )

p pf x
εσ =

, 2       linear
3 quadratic

p ⎧
= ⎨
⎩

 

2 1 0, ,i i ic c c  Coefficient values for the approximation 

equation for the i-th segment 

Determined by segmentation algorithms. 

i Segment index number SIE or part of x determines i 

k Number of address lines to the coefficient table 

of an NFG 
2 minlogk s= ⎡ ⎤⎢ ⎥  

n 1.  Number of bits in x 

2.  Bus-width for a given NFG 

Defined by NFG requirements 

s number of segments to be used in an NFG 2 minlog2 2s ks ⎡ ⎤⎢ ⎥= =  

mins  Minimum number of segments required for an 

NFG  

From segmentation algorithms or by 

segments.m 

SRR  Segment Reduction Ratio 
min

min

non unif

unif

sSRR
s

−

=  

propt  Combinational propagation delay through a 

logic device 

Using models or HUandDelay.m 

max,ix  Maximum value of x in segment i From segmentation algorithms 

min,ix  Minimum value of x in segment i From segmentation algorithms 

y Approximation function, linear or quadratic Defined by NFG architecture 

Table 13 Variable Definitions. 
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C.2 COMMON VARIABLE VALUES 

The following is a list of parameters used throughout this thesis.  These values 

were extracted from empirical evidence and/or product specifications sheets [18]. The 

values with the more significant digits was utilized for all calculations. 

 

Parameter Description From 

Simulation 

From 

[18]  

,MUXCY S Ot →  Propagation delay from the select line of MUXCY 

to the output. 

0.298 ns Note 2 

, 0MUXCY I Ot →  Propagation delay from the either input (I0 or I1) 

of MUXCY to the output. 

0.053 ns 0.05 ns 

ORCYt  Referred to as SOPSOPt  [18], the propagation delay 

through the fast SOP OR gate, ORCY. 

0.439 ns 0.44 ns 

,4LUTt  Referred to as ILOt [18], Propagation delay through 

a 4-input LUT 

0.439 ns 0.44 ns 

,5LUTt  Referred to as 5IFt [18], Propagation delay through 

a 5-input LUT 

Note 1 0.72 ns 

1. No simulation data for this value. 

2. Value is not found in reference. 

Table 14 Common Variable Values. 
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APPENDIX D. MODEL DATA 

D.1 COMPLEXITY AND DELAY FOR BASIC AND COMPACT NFGS FOR 
THE FUNCTIONS IN THE FUNCTION SUITE 
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( ) 1f x x=  on [1,2] 
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( )f x x=  on [1,2] 
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( ) 1f x x=  on [1,2] 
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2( ) logf x x=  on [1,2] 
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( ) ln( )f x x=  on [1,2] 
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( ) sinf x xπ=  on [0,0.5] 
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( ) cosf x xπ=  on [0,0.5] 
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( ) tanf x xπ=  on [0,0.25] 
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( ) lnf x x= −  on [1/512,1/4] 
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Basic NFGs realizing f(x)=sqrt(-log(x)) on the interval [0.0019531,0.25]
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2( ) tan 1f x xπ= +  on [0,0.25] 

Basic Architectures Compact Achitectures 
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Basic NFGs realizing f(x)=(tan(pi*x))2+1 on the interval [0,0.25]
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Compact NFGs realizing f(x)=(tan(pi*x))2+1 on the interval [0,0.25]
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Basic NFGs realizing f(x)=(tan(pi*x))2+1 on the interval [0,0.25]
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LUC
LNC
QUC
QNC

 

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

n (bits)

D
el

ay
 (n

s)
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( ) ( )2 2( ) log 1 log 1f x x x x x= − + − −  on [1/256,1-1/256] 

Basic Architectures Compact Achitectures 
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Basic NFGs realizing f(x)=0-(x*log2(x)+(1-x)*log2(1-x)) on the interval [0.0039063,0.99609]
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Compact NFGs realizing f(x)=0-(x*log2(x)+(1-x)*log2(1-x)) on the interval [0.0039063,0.99609]
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Basic NFGs realizing f(x)=0-(x*log2(x)+(1-x)*log2(1-x)) on the interval [0.0039063,0.99609]
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Compact NFGs realizing f(x)=0-(x*log2(x)+(1-x)*log2(1-x)) on the interval [0.0039063,0.99609]
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Basic NFGs realizing f(x)=0-(x*log2(x)+(1-x)*log2(1-x)) on the interval [0.0039063,0.99609]
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1( )

1 xf x
e−=

+
 on [0,1] 

Basic Architectures Compact Achitectures 
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Basic NFGs realizing f(x)=1/(1+exp(-x)) on the interval [0,1]
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Compact NFGs realizing f(x)=1/(1+exp(-x)) on the interval [0,1]
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Basic NFGs realizing f(x)=1/(1+exp(-x)) on the interval [0,1]
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Compact NFGs realizing f(x)=1/(1+exp(-x)) on the interval [0,1]
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Basic NFGs realizing f(x)=1/(1+exp(-x)) on the interval [0,1]

 

 
LUB
LNB
QUB
QNB

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

n (bits)

H
U

P
 (%

)

Compact NFGs realizing f(x)=1/(1+exp(-x)) on the interval [0,1]
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2

21( )
2

x

f x e
π

−

=  on 0, 2⎡ ⎤
⎣ ⎦  
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Basic NFGs realizing f(x)=1/(sqrt(2*pi))*exp(-x2/2) on the interval [0,1.4142]

 

 
LUB
LNB
QUB
QNB

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

n (bits)

H
U

P
 (%

)

Compact NFGs realizing f(x)=1/(sqrt(2*pi))*exp(-x2/2) on the interval [0,1.4142]
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Basic NFGs realizing f(x)=1/(sqrt(2*pi))*exp(-x2/2) on the interval [0,1.4142]
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Basic NFGs realizing f(x)=1/(sqrt(2*pi))*exp(-x2/2) on the interval [0,1.4142]
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Compact NFGs realizing f(x)=1/(sqrt(2*pi))*exp(-x2/2) on the interval [0,1.4142]
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( ) sin( )xf x e=  on [0,2] 

Basic Architectures Compact Achitectures 
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Basic NFGs realizing f(x)=sin(exp(x)) on the interval [0,2]
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Compact NFGs realizing f(x)=sin(exp(x)) on the interval [0,2]
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Basic NFGs realizing f(x)=sin(exp(x)) on the interval [0,2]
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Compact NFGs realizing f(x)=sin(exp(x)) on the interval [0,2]
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Basic NFGs realizing f(x)=sin(exp(x)) on the interval [0,2]

 

 
LUB
LNB
QUB
QNB

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

n (bits)

D
el

ay
 (n

s)

Compact NFGs realizing f(x)=sin(exp(x)) on the interval [0,2]
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D.2 THE BEST BASIC ARCHITECTURES FOR EACH FUNCTION  

1. Based on Smallest HUP 

Best Basic NFG based on HUP  1=LUB, 2=LNB,3=QUB, 4=QNB 
 Function Number 
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 
2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 
3 1 2 1 1 2 1 1 1 2 2 1 2 1 1 1 
4 1 1 1 2 1 2 1 1 1 2 1 2 1 2 2 
5 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 
6 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 
7 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 
8 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 
9 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 
10 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 
11 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 
12 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 
13 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 
14 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 
15 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 
16 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 
17 1 1 1 1 1 1 1 1 1 4 1 4 1 1 1 
18 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 
19 1 1 1 1 1 1 1 1 1 4 1 3 1 1 3 
20 1 1 1 1 1 1 1 1 1 4 1 3 1 1 3 
21 1 1 1 1 1 1 1 1 1 4 1 4 1 1 3 
22 1 1 1 1 1 1 1 1 1 4 3 4 1 1 3 
23 1 1 1 1 1 1 1 1 1 4 1 3 1 1 3 
24 1 1 1 1 1 1 1 1 1 4 3 4 1 1 3 
25 1 1 1 1 1 1 1 1 1 4 3 4 1 1 3 
26 1 1 1 1 1 1 3 3 3 4 3 3 1 1 3 
27 1 3 1 1 3 1 3 3 3 4 3 4 1 1 3 
28 3 3 1 3 3 3 3 3 3 4 3 4 1 3 3 
29 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
30 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
31 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
32 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
33 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
34 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
35 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
36 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
37 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
38 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
39 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
40 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
41 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
42 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
43 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
44 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
45 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
46 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
47 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
48 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
49 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
50 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
51 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
52 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
53 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
54 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
55 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
56 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
57 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
58 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
59 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
60 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
61 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
62 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
63 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
64 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
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2. Based on Shortest Delay 

Best Basic NFG based on Delay  1=LUB, 2=LNB,3=QUB, 4=QNB 
 Function Number 
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 
2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
22 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 
23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
26 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 
27 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 
28 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 
29 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 
30 1 1 1 1 1 1 1 1 1 3 1 3 1 1 3 
31 1 1 1 1 1 1 1 1 1 3 1 3 1 1 3 
32 1 1 1 1 1 1 1 1 1 3 1 3 1 1 3 
33 1 1 1 1 1 1 1 1 1 3 1 3 1 1 3 
34 1 1 1 1 1 1 1 1 1 3 1 3 1 1 3 
35 1 1 1 1 1 1 1 1 1 3 1 3 1 1 3 
36 1 1 1 1 1 1 1 1 1 3 3 3 1 1 3 
37 1 1 1 1 1 1 1 1 1 3 3 3 1 1 3 
38 1 1 1 1 1 1 3 3 3 3 3 3 1 1 3 
39 1 3 1 1 3 1 3 3 3 3 3 3 1 1 3 
40 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 
41 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 
42 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 
43 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 
44 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 
45 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
46 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 
47 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
48 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
49 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
50 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
51 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
52 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
53 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
54 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
55 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
56 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
57 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
58 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
59 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
60 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
61 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
62 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
63 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
64 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
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D.3 THE BEST COMPACT ARCHITECTURES FOR EACH FUNCTION 
VERSUS SIZE 

1. Based on Smallest HUP 

Best Compact NFG based on HUP  1=LUB, 2=LNB,3=QUB, 4=QNB 
 Function Number 
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 
2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 
3 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 
4 1 1 1 2 1 2 1 1 1 2 1 1 1 2 1 
5 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 
6 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 
7 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 
8 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 
9 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 
10 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 
11 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 
12 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 
13 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 
14 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 
15 1 1 1 1 1 1 1 1 1 4 1 4 1 1 1 
16 1 1 1 1 1 1 1 1 1 4 1 4 1 1 3 
17 1 1 1 1 1 1 1 1 1 4 1 4 1 1 3 
18 1 1 1 1 1 1 1 1 1 4 1 4 1 1 3 
19 1 1 1 1 1 1 1 1 1 4 1 3 1 1 3 
20 1 1 1 1 1 1 1 1 1 4 3 3 1 1 3 
21 1 1 1 1 1 1 1 1 1 4 3 4 1 1 3 
22 1 1 1 1 1 1 3 3 3 4 3 4 1 1 3 
23 3 3 1 3 3 3 3 3 3 4 3 3 1 3 3 
24 3 3 3 3 3 3 3 3 3 4 3 4 1 3 3 
25 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
26 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 
27 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
28 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
29 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
30 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
31 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
32 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
33 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
34 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
35 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
36 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
37 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
38 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
39 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
40 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
41 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
42 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
43 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
44 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
45 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
46 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
47 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
48 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
49 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
50 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
51 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
52 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
53 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
54 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
55 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
56 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
57 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
58 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
59 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
60 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
61 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
62 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
63 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
64 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 
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2. Based on Shortest Delay 

Best Compact NFG based on Delay  1=LUB, 2=LNB,3=QUB, 4=QNB 
 Function Number 
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
22 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 
23 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 
24 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 
25 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 
26 1 1 1 1 1 1 1 1 1 3 1 3 1 1 3 
27 1 1 1 1 1 1 1 1 1 3 1 3 1 1 3 
28 1 1 1 1 1 1 1 1 1 3 1 3 1 1 3 
29 1 1 1 1 1 1 1 1 1 3 1 3 1 1 3 
30 1 1 1 1 1 1 1 1 1 1 3 3 1 1 3 
31 1 1 1 1 1 1 1 1 1 1 3 3 1 1 3 
32 1 1 1 1 1 1 3 3 3 3 3 3 1 1 3 
33 1 3 1 1 3 1 3 3 3 1 3 1 1 1 3 
34 3 3 1 3 3 3 3 3 3 3 3 1 1 3 3 
35 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 
36 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 
37 3 3 3 3 3 3 3 3 3 1 3 1 3 3 3 
38 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 
39 3 3 3 3 3 3 3 3 3 1 3 1 3 3 3 
40 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 
41 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
42 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 
43 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
44 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
45 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
46 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
47 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
48 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
49 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
50 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
51 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
52 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
53 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
54 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
55 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
56 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
57 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
58 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
59 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
60 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
61 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
62 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
63 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
64 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
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D.4 PERCENT HUP AND DELAY DUE TO SIE FOR LNB AND QNB NFGS 

Basic architectures for ( ) 2xf x =  on [0,1] 
Hardware Utilization Percentage Combinational Delay 
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Basic architectures for ( ) 1f x x=  on [1,2] 
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Basic architectures for ( )f x x=  on [1,2] 
Hardware Utilization Percentage Combinational Delay 
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Basic architectures for ( ) 1f x x=  on [1,2] 

Hardware Utilization Percentage Combinational Delay 
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Basic architectures for 2( ) logf x x=  on [1,2] 
Hardware Utilization Percentage Combinational Delay 
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Basic architectures for ( ) ln( )f x x=  on [1,2] 

Hardware Utilization Percentage Combinational Delay 
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Basic architectures for ( ) sinf x xπ=  on [0,0.5] 

Hardware Utilization Percentage Combinational Delay 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

n (bits)

P
er

ce
nt

 H
U

P
 d

ue
 to

 S
IE

 (%
)

HUPSIE/HUPNFG for f(x)=sin(pi*x) on the interval [0,0.5]

 

 
LNB
QNB

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

n (bits)

P
er

ce
nt

 D
el

ay
 d

ue
 to

 S
IE

 (%
)

tSIE/tNFG for f(x)=sin(pi*x) on the interval [0,0.5]

 

 

LNB
QNB

Basic architectures for ( ) cosf x xπ=  on [0,0.5] 
Hardware Utilization Percentage Combinational Delay 
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Basic architectures for ( ) tanf x xπ=  on [0,0.25] 
Hardware Utilization Percentage Combinational Delay 
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Basic architectures for ( ) lnf x x= −  on [1/512,1/4] 

Hardware Utilization Percentage Combinational Delay 
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Basic architectures for 2( ) tan 1f x xπ= +  on [0,0.25] 
Hardware Utilization Percentage Combinational Delay 
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Basic architectures for ( ) ( )2 2( ) log 1 log 1f x x x x x= − + − −  on [1/256,1-1/256] 
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Basic architectures for 1( )
1 xf x

e−=
+

 on [0,1] 

Hardware Utilization Percentage Combinational Delay 
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Basic architectures for 
2

21( )
2

x

f x e
π
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=  on 0, 2⎡ ⎤
⎣ ⎦  
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Basic architectures for ( ) sin( )xf x e=  on [0,2] 
Hardware Utilization Percentage Combinational Delay 
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